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I. INTRODUCTION

1.1 Objectives

This thesls will present a detailed statistical study of a uniform
and a normal random number generator as well as the implementation of
each on the IBM-TO94 digital computer.

Basically, this thesis will attempt to discover desirable or unde-
sirable features of such generators by subjecting them to a fairly
extensive set of statistical tests. Based on the results of these tests,
one should have a fairly good indication concerning such important aspects
as distribution properties and the degree of randomness exhibited by the
generators. However, it should be pointed out that no matter how strongly
the results may indicate a favorable conclusion, one should exercise some
degree of caution not to be overly optimistic. The reason for this is
the fact that the power of some statistical tests of hypothesis considered
in this study cannot be determined.

A computer program has been written by the author to generste the
necessary pseudo-random numbers for the study. The computer program
attempts to combine the basic advantages of FORTRAN IV and MAP (MACRO
ASSEMBLY PROGRAM) computer languages so that optimum efficiency can be
attained in the generation of pseudo-random numbers.

1.2 Background

In order to be able to solve practical problems in which the con-
struction of some random process is required, it becomes necessary to
have same random number generator so that the random process may be

simuiated. The solutions to such practical problems depends, of course,
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on how good the given pseudo-random number generator really is. Two of
the most widely used generators are those that generate uniformly dis-
tributed pseudo-random quantities and normally distributed pseudo~-random
quantities. The former has the attractive feature of being used to
obtain random events obeying other distribution functions.

Since high-speed digital computers have become easily accessible,
it is desirable and advantageous to generate by some deterministic means

a sequence of pseudo~random numbers obeying some specified distribution

and longer observation, certain patterns become evident. Therefore, the
essence of such a task is to find a generator that exhibits as few
patterns as possible and still maintain its statistical behavior accord-
ing to the specified distribution function. Tt is important to define
a sequence of random numbers generated by some deterministic means as a
sequence of pseudo-random numbers because the word "random" no longer
maintains its basic meaning in its entirety. Henceforth, whenever the
word "random" appears in this thesis it shall imply pseudo-random.

Many attempts have been made, with varying degrees of success, to

contribute to the state-of-the-art of random number generators. Most of

the existing uniform random number generators are of the form

Xi41 = 8%y + b (mod M) i=1,2,...
(1.2.1)
wlth the modulo depending on whether a given computer 1s binary or
decimal. A significant drawback to these is the requirement of extensive

-

testing by trial and error to determine the constants a and b that
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appear to produce the most satisfactory results. In many papers that
have been written, the determination of a and b overshadows the
investigation. See for example reference 20.

It is the purpose of this thesis to use a significantly different
uniform random number generator in which the parameters are specified
conclusively by the theory of the generator. As a result, no additional
effort is needed to produce optimal conditions. In addition, the normal
random number generator is based on & direct transformation from the

uniform to the normel distribution thug eliminating spproximate tech-

|

niques such as that by Hastings. Briefly, the Hastings technlque con-

siders the integral

=) -%‘-t
u = Jf e dt 0<u<0.5

(1.2.2)

and approximates X(u) where X ~ N(0,1) by the polynomial relation

X(a) = 1 - { 2.30753 + 0.27061n _ (1.2.3)
1 + 0.992297n + 0.04481q

________ L aT Mawisnasda

Has b-l-usb, C. OLe: nny. oximations for u.L5.L vad vidbpu o

Universlty Press, Prlnceton, New Jersey, 1955, p. 191.

ki
4]
.
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IT. THE GENERATORS

Thls chapter contains & mathematical presentation of the uniform and
normal random number generators considered for this study. The uniform
random number generator is based on a sequence of zeros and ones generated

by an nt

h degree maximal length linear recursion relation. This relation
is assocliated with a primitive polynomial with coefficients whose values
are either zero or one and a degree n equal to the word length of a
given digital computer. As stated previously, the computer toward which
this study is oriented is the IBM-(094 which is a binary machine; thus
the choice of the (O,l) seguence.

The normal random number generator is based on a direct transforma-
tion from two random variables distributed uniformly on the unit
interval (0,1).

2.1 The Uniform Randam Number Generator

et a = {ék} be the sequence of zeros and ones generated by the

linear recursion relation

8y = Cy8_ ] + CoBy.o * - . o + Cpa).p (mod 2) (2.1.1)
k=1,2, . ..
for any given set of integers cj3 (i =1, 2, ..., n) each having the
value of zero or one where c4 (1=1,2, . . ., n) are the coefficients

of saome polynomial

F(X) = 1+cgX+coXo + . . .+ X (2.1.2)
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Choose f(X) so that it is primitive over the Galois field of order
two - GF(2). (One defines a Galois field as any finite field; hence,
GF(2) is that finite field contalning the elements zero and one.) Let
¢, =1 and say that £(X) 1is a primitive nth degree polynomial over
GF(2). (A primitive nth degree polynomial over GF(2) may be defined as
that polynomial whose roots are primitive (2n-l)th roots of unity.)

As & result, {ak} is said to be a maximal length linearly recurring
sequence modulo 2 (ref. 1).

From (2.1.1), notice that &, is determined solely by the n-tuple
(ax-1, 8k-2, + + .5 8k-n) of terms preceding it. Similarly, ax4+] 1s
a function solely of (ax, &1, - « +» 8k.ns+1)e AS a result, each
such n-tuple has a unique successor governed by the recursion relation
(2.1.1).

Iet p be the period of the linear recurring sequence {%k} . The
period of {ak> has to be the same as the period with which an n~tuple
repeats. Obviously, p canmnot be greater than 2n-l, where n 1s the
degree of the polynomial f£(X), because the n-tuple (0,0,...,0) is always
followed by (0,0,...,0). It has been shown (refs. 2 and 3) that a
necessary and sufficient condition that p = 2% - 1 i1s that f(X) be
primitive nt! degree polynamial over GF(2). Such linearly recurring
sequences have been extensively studied and used as codes in communica=-
tion theory (ref. 4).

Two properties of interest are the following (ref. 2):
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(2) Every nonzero binary n-vector (by, by, . . ., b,) occurs
exactly once per period as n consecutlve binary digits
in ak> where n 1s the degree of f(X).
As a simple example to illustrate the preceding, let f£(X) =1 + X + X2
be the primitive polynomial of degree n = 2 over GF(2) (ref. 5); then

¢y = ¢ = 1. Clearly, the linear recursion relation is

ay = & _1 + 8o (mod 2) (2.1.3)

The period p = 22 - 1 =3 indicates that {ék} should repeat after its
first three elements have been determined. For every such sequence, let
a,b =1 - 1if a, = 0 all successive a; would also be zero - then

by (2.13)

1]
Om

1

=

al

ap = a1 + a5 = 0 )the period of the sequence

Il

33 8s +ay = 1
ay = a3 + 8y = 1

a5 = a) + a3 =0

il
[}

a6=a5+a1+

ete.
Notice that the elements of (ay) repeat themselves after the first

three have been determined. Property (1) is satisfied in that
b)

S;‘ ay = a, + a, + a; = 2. Property (2) is also satisfied since one

A

k=1
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has binary vectors (1,0,1), (1,1,0), (0,1,1) that occur exactly once per

period.

More generally, let f£(X) and aé) be defined. Consider the

sequence of numbers of the form
' L

-t
Yy = }; CHRE S (2.1.4)
t=1
where the optimal value of L is equal to n, the degree of f(X); r 1is
an arbitrarily chosen integer, 0 <r < 2" . l; and ¢ 1is any integer

"
H

greater or equal to L chosen so that q and p = 2" -« 1 are relatively

prime. Clearly, Y, 1s the binary expansion of a number whose binary
representation is L consecutive digits in a, and each Yy 1s spaced
g digits apart. From (2.1.&), it can be seen that such numbers always
lie in the interval O <Yy < 1.

Equation (2.1.4) is due to R. C. Tausworthe (ref. 1) who has shown

that such sequence of numbers are uniformly distributed on the unit

1]

inverval (0,1) with mean u l-:zg:g and variance o° = fa; hence
for large L, the mean and variance of Y, are identically the same as
the mean and variance of the uniform distribution function. in the unit
interval. As a result, equation (2.1.4) represents the uniform random
number generator that is implemented for thils study.

A primitive polynaomial of degree 35 which is equal to the word
length of the IBM-7094% was obtained from a table of primitive polynamials

over GF(2) published by Watson (ref. 5). The polynamial

£(X) = %° + X2+ 1 (2.1.5)
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is associated with the linearly recurring sequence

&k = ak_2 + ak_35 (mOd 2) (2-1-6)

for k 2 35; for 1<k < 3k4

8, =1 if k 1s even

ap =0 if k 1is odd

For this study, L and q were set equal to 35 which is relatively

nrima +A
t’J. whed i, AN

tion (2.1.4), precisely 252 - 1 Y's before repetition occurs. Of
course, this study considers only a small portion of these, say

N = 10,000, and attempts to discover their varlous properties as will
be seen later.

2.2 The Normal Random Number Generator

G. E. P. Box and Mervin E. Muller (ref. 6) have derived a method to
obtain a pair of independent random variables normally distributed with
mean zero and variance one from two independent random variables from
the seme uniform distribution on the interval (0,1). A brief presenta-
tion of their approach follows.

Let U;,Up be independent randam variables uniférmly distributed on

the unit interval. Consider the random variables

(-2 loge U1)1/2sin 2nUs (2.2.1)

>
=
[
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By giving attention 4o principal values, obtain the inverse relationships
3

2.2
Uy = (™27 /2 (2.2.3)
X
U, = & arctan|=2 (2.2.4)
2n X1
Then, the joint density of X;,X, is
2, 2
-(X754%X55) /2
£(X,X) = = e L2 (2.2.5)
2
but
’ \ 1 -X12/2 1 _X12/2 e e R .
T{X1,%2) = e - == = £(X1)£(Xp)  (2.2.6)

Hence, X;,Xo> are a pair of independent random variables from the same
normal distribution with mean zero and unit variance.
Box and Muller's approach is based on the following considerations:
the probability density f(X;, X5) 1is constant on circles; hence
o = arctan(Xe/Xl) is uniformly distributed on the interval (0,2r).
Further, the square of the length of radius vector e = X1? + X22 has
a chi-squared distribution with two degrees of freedom. Since Uj; 1is
uniformly distributed in the interval (O,l), then -2 logg U; 1s dis-
tributed as a chi-squared with two degrees of freedom. By proceedin
in the reverse order, Box and Muller arrive at (2.2.1) and (2.2.2).
Since equations (2.2.1) and (2.2.2) contain square roots, trigono=-

metric functions, and natural logarithms, their accuracy depends, in

part, on the accuracy of the available library programs which campute
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these functions. The IBM-T09% library programs possess fairly high
accuracy; therefore, for the major part, the accuracy with which equa-
tions (2.2.1) and (2.2.2) are computed depends on the degree of uni-

formity of U; and Us.
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ITTI. THE IMPLEMENTATION OF THE GENERATORS ON

THE IEM-TO94% COMPUTER

Needless to say, it would be a colossal task, if not impossible, to
attempt to generate uniformm or normal random numbers by the methods dis-
cussed in Chapter ITI without the use of same high-speed digital computer.
For this reason, a computer program has been written by the author to
facilitate this study.

The program was written by considering the most desirable features
of the IBM~-TO9% and its internal language so that a random number may be
generated with & minlmum amount of computer time. A listing cf the com~
puter program appears along with a detailed discussion of its contents.

5.1 Computer Program

Basically, the computer program is written to provide two options:
(a) the generation of one random number uniformly distributed on the
interval (0,1) according to equation (2.1.4), and (b) the generation of
one randam number normally distributed with zero mean and unit variance
according to equation (2.2.1), and, as a consequence, two randam numbers
uniformly distributed on the unit intervel. It is impliecit here that
the first option be chosen whenever one needs only uniformly distributed
random numbers, while the second be chosen whenever one's primary
interest is to obtain normelly distributed randam numbers.

For ease of discussion, the program is divided into four sections.
The first two sections asre written in Fortran IV using integer arithmetic.

Mainly, these two sections generate the sequence ayx of zeros and ones
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according to the linear recursion relation (2.1.6) and the given poly=
nomial (2.1.5). The remaining two sections are written entirely in MAP,
the symbolic language of the IBM-TO9%. Section 3 generates two uniform
random numbers in the unit interval and serves as an intermediate step
toward the determination of one normally distributed randam number by
equation (2.2.1). If the first option is chosen, Section 3 is amitted
and its basic function is assumed by Section 4 where one uniform random
number is generated.

ML M T s e e mn o~
Lie Caddllly Scyucacce

is the entrance point to the program. The calling sequence contains
information for the necessary lnput and expected output of the program.
The input of the program is comprised of the argument IR, N, and L. The
argument IR - corresponding to the integer r of Chapter IT - is a one~
dimensional array of two different positive fixed integers arbitrarily
chosen. For all practical purposes, their values could be anywhere
from, say, 50 to 200,000. The argument N controls the specific point
of entrance to the computer program. For any one of the two avallable
options, if multiple random numbers are needed, it 1s essential that the
initialization part (Section 1) is omitted after the first time the com-
puter program has been called. Hence, for the first call of the program
the argument N has to be equal to the fixed integer one. Otherwise,

N mey be equel to any fixed integer greater than one. The argument L

controls the choice of the two options. If the first option is chosen,
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L has to be equal to the fixed integer one. If the second option is
chosen, the argument L must be equal to the fixed integer two.

Arguments RN, Y1, and Y2 constitute the output of the computer pro-
gram., For the first option, Yl will be the location where the one uniform
random number will be stored. For the second option, arguments RN, Y1,
and Y2 will contain the one normal and the two uniform random numbers,
respectively. It is worth noting that all arguments in the calling
sequence are dummy arguments and may be named differently. Moreover,
the array IA (35,2) must be placed in COMMON by the user.

As an example of the use of the computer program, consider the need
for 100 random numbers normally distributed with zero mean and unit
variance. Define an array A in which these random numbers will be stored.
Then, one way to obtain these random numbers by using SUBROUTINE GETRAN
would be as follows:

COMMON IA (35,2)
DIMENSION MN (2), A (100)
3063

10275

MN (1)

[

MN (2)
DO1I=1,100
CALL GETRAN (MN, I, 2, X, Y, Z)

1A(I) =X
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Notice that the arguments of the calling sequence have been renamed;
that is, MN, I, 2, X, ¥, Z correspond to IR, N, L, RN, Y1, Y2,
respectively. By replacing the argument N, the running subscript I of
the DO loop satisfies the requirement that its value be equal to one for
the first call of SUBROUTINE GETRAN and greater than one for all
subsequent calls.
It has been noted briefly that Sections 1 and 2 generate the sequence
ay of zeros and ones. More specifically, the primary purpose of Section 1
is the initialization of the computer program. In this section, the first
usable 35 elements of (ék} necessary to compute one uniform number
according to equation (2.1.4) are located and determined. Their location
depends strictly on the value of the arbitrarily chosen integer stored
in IR(1). Recall that the subscript of {?k} in
L
Y, = 27t
t=

qu+r -t

[

depends on the value of the integer r (IR) and the integer q = 35.
Hence for m = 1, the first element of <ék> needed in the sum is
clearly 8354y 21 2 while the last is 83541y 35 where L = 35. The loca=
tion of these 35 elements of (ék} implies the immediate calculation of
the elements of <ék;> for all k up to and including the element
355+r-l according to the linear recursion relation (2.1.6). If the
second option is chosen, the procedure is repeated using the second
arbitrarily choseu integer stored in IR(2). Otherwise, the task of

Section 1 is completed. For any value of the argument N greater than
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one, the computer program will assume that initialization has occurred;
thus, it will omit Section 1 and proceed to Section 2.

It is reasonable to assume that one would want to call the program
more than once using the same input, except for the value of the argument
N, in order to obtain multiple random numbers based on the option chosen.
Hence for each call of the camputer program at least 35 more elements of
{ak> have to be determined. This becames the task of Section 2. Recall
that the first set of 35 elements of ag} with respect to the integer
IR(1) were located and determined in Section 1. (Of course, the pro-
cedure is quite the same for the integer IR(2), if it is required by the

option.) Therefore, to compute an additional 35 elements, consider

35
-t
Yp = E: 2 8gmiret
t=1

wvhen m = 2. Clearly, the first element needed in this sum is 870+ral
while the last is 870+r-35" Notice that a7p4+r.35 18 that element

of {ak> immediately following assip.1, the last element of the first
set. Hence, for m = 2, the 35 elements of (ég} needed for the sum
are those that follow immediately after the first set of 35 elements
determined in Section 1. Therefore, for any m it 1s only necessary
to compute 35 elements of {ék} based on the preceding set as specified
by the theory of the generator in Chapter II. After initialization,
Section 2 assumes this task.

Recall that Section 3 1s associated with the second option, and

Section 4 implies the first option. Entrance to either one of these



- 24 -

sections implies that the necessary elements of a%) have been deter-
mined and stored. Because of the similarity in the purpose of these two
sections, it is only necessary to discuss Section 4 and imply the Pro=-
cedure for Section 3.

Section 4 is programed in MAP. The advantages for the choice of
this computer language become evident by the following discussion. The
IBM-TO94 numerical register contains 36 bit positions, the first of these
being the sign position. Consider storing in the 36 bit positions the
binary number 1 followed by 35 zeros (in octal this number is written
as 400000000000). Thus, the configuration of the numerical register
would appear as follows:

s12 ] . . 34 %
1|ojolojololololojolololofolololo]olololololololololololojololololololo

Shift the contents of the numerical register one place to the right. As
a result, the number 1 appears under bit position cne, and the O that

was under bit position 35 is shifted in the sign position. Choose the
binary point to be to the left of bit position one. Thus, bit position
one has the value of 2~ since it contains the number 1. As a matter of
fact, the numerical register has a value of ot since all other bit posi-
tions contain zeros. Similarly, if bit position two contained the num-
ber 1 with zeros in all other bit positions, the numerical register would
have the value of 272. The argument can be extended to include every

bit position of the numerical register. Therefore, one may think of

each bit position of the register as being capable of representing



- 25 -

successive negative powers of the base 2 with the power being equal to

the bit position.
Iet the value of the numerical register be equal to 2'1. Consider,

as an example, some 35 elements of {éﬁ) to be the following:
a35m.r_-t = {l,o,l,l,0,0,0,l,l,1,0,0,l,1,0,0,0,0,1,0,l,l,o,o,o,l,l,l,o,o,
1,1,0,0,1}

for t=1,2, «. + «, 35 and some m. Consider a way to test each of

these 35 elements sequentially beginning with the first to determine

ct

R dw mem T e Lo ~ o~
whether its value is zero or one. If i

1

is one, the value of the register,
presently equal to 27 since bit position one contains the number one, is
added to a quantity Y1 which initially was set equal to zero. If the
element being tested is zero, nothing is added to Yl. Hence, for the
example, Y1 is equal to 2=1 pecause the first element is one. Proceed
by shifting the contents of the numerical register one place to the right.
Now bit position two contains the number 1 with zeros in all other bit
positions. This implies that the value of the register is equal to 2'2.
Test the next consecutive element. Add the contents of the register to
Y1l only if the value of the element is one. Otherwise, Yl remains the
same. For the example, Y1 remains equal to o=l because the second element
is zero. Again shift the contents of the numerical register one place to
the right. As a result, the number 1 appears under bit position three,
and the value of the register is 2. Test the third element. If one,

add the value of the register to Y1; otherwise, Y1 remains the same.

For the example, the third element is one; therefore, T1 is now egual
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to 2—l + 2'5. Continue this procedure until all 35 elements have been

tested sequentially. At the end, Y1 should represent the value of one
random number uniformly distributed on the interval (0,1). For the

example, Y1 would be equal to

ot 4 073 2'l+ + 2'8 b 270 4 o710 L o7 -1k

v 2T L o8 B 3R 75

based on the seventeen nonzero elements and the corresponding contents
of the numerical register.

The preceding approach offers the attractive advantage of consider-
able reduction of computer time. Recall that the mathematical definition

of the uniform number
L
-t
Iy = }: 2 7 8gmirat
t=1

implies the multiplication of each element of {éﬁ) needed in the sum
by the number 2 which has been raised to some negative power equal to the
value of the subscript t. The raising of a given number to a power,
division, and multiplication, require considerably more time in most

digital computers than addition or subtraction. Notice that all elements

of a are either zero or one. Therefore the product
k

-t
2 aqm+r-t

-t

really implies add or not add 2 to the sum depending on whether the

corresponding element of ak} is one or zero. Since the numerical
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register of the IBM-7094 was so constructed to produce successive o=t

for t=1, 2, . . ., 35, the operations needed to compute

-t

2 aqm+r-t

have been reduced to one; namely, addition. FORTRAN IV does not have
the necessary flexibility to permit this approach; thus the choice of
MAP. From the tests that have been made, it has been determined that

the amount of computer time necessary to determine one random number by

this method is

3]

approximately 0.0015 second.
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IV. TESTS FOR RANDOMNESS

If the formulae discussed in Chapter II are to be useful in simu-
lating random events or processes, it is essential that each generated
sequence of numbers possess desirable features of randomness.

Intuitively speaking, & random sequence of numbers 1is a sequence
in which the specific values of the elements are not at all a function
of their position in the sequence. In other words, any particular order
the values of some random sequence present themselves is no more likely
to occur than any other ordering.

For the overall investigation, a total of two-hundred (200) sequences
each containing 10,000 elements were generated. Of these, one-hundred
were generated using the uniform number generator (2.1.4), fifty were
generated using eguation (2.2.1), and the remaining fifty were generated
using equation (2.2.2). Equations (2.2.1) and (2.2.2) comprise the
normal random number generator.

Three tests have been performed on all sequences for the detection
of nonrandomness. Two of these are runs tests, and the third is a test
on serial correlation. These tests are intended to serve a dusl purpose:
(a) to detect nonrandomness, and (b) to create a system of checks between
the results of one test as compared with the results of another. All the
necessary‘computations were performed on the IBM-7094% with the results
appearing at the end of this chapter.

4.1 Runs Test

To detect a lack of randomness, one must decide whether a given

sequence of numbers generated by such deterministic means as those of
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Chapter II is likely to occur by chance or some assignable causes are
indicated. A technique with which such a decision can be made is based
on the order in which the particular values of a sequence of numbers
were obtained. Furthermore, this order depends on the number of runs
exhibited in the sequence.

Given a sequence of numbers, consider the assignment of all elements
in the sequence into two classes, A and B, class A containing all ele-

ments in the sequence that are greater than the mean while class B con-
. are less than or equsl to the mean
distribution function. Let np, np be the total number of elements
observed in class A and class B, respectively. Then, a run is defined
as a succession of elements from the same class contained between ele=-
ments of a different class. Hence, for a given sequence of numbers,

the total number of runs is always one plus the number of unlike neighbors

in the given sequence. For example, the sequence

aababbabaas

has six unlike neighbors and, therefore, seven total number of runs.

Let r denote the total number of runs contained in a given sequence
of numbers. Since r can take on any value within some domain, then r
is a random variable that gives an indication on whether a sequence of
numbers may be looked upon as random. This can be illustrated by con-
sidering the following example: Suppose one tosses a coln fifty times

resulting in a sequence of only two runs consisting of twenty-five heads

followed hy twenty-five tails. He womld,

. € o n
1L = Lol <2 w s 3 = SR J S Y] e g
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that the probability of success had not been the same from trial to
trial. If, on the other hand, the sequence of fifty tosses contained
fifty runs consisting of alternating heads and tails, the suspicion
would be that the trials had not been independent.

Consider the question of testing the null hypothesis that a given
sequence of numbers appears to be random. The argument applied to the
example can also be applied to test this null hypothesis based on total
number of runs. It is apparent that 1f a given sequence of numbers is
random, the elements of class A or B should be well mixed and r should
neither be too small nor too large. If there exist long successions of
elements of the same class followed by long successions of elements of
the other class, it would be reasonable to conclude some biased departure
from the true probability structure which would tend to reduce r. The
other extreme would be when the elements from both classes are alter-
nating with a very high frequency. In this case, the apparent conclu-
sion would be that the value of an element depends on the value of the
preceding one. This, of course, would tend to make r fairly large.
Therefore, the test is performed by counting the total number of runs
in a given seguence, accepting the null hypothesis if for some specified
number r, and ri, To <r< ry, and rejecting it otherwise.

In order that one may specify r, and r1 for a given level of
significance, the distribution of the random variable r 1is needed.
It has been shown (refs. 7 and 12) that the density of r is given

e
~J

(% " ¥)(7e 2

k - 1 £ = 4
P(r) = = L / k = r/2 (4.1.1)
ng + ng
(oo ™)
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if r 1s even and

[ s [
B (nAn+ nB) P
A

(k.1.2)
if r 1s odd. Hence to test the null hypothesis in question with a
probability a for the Type I error, one finds integers r, and r;p

so that as nearly as possible

To
Y p(r) =& (4.1.3)
LJ \ 2 [ ] L 2
r=0
and

T1

L 2

r=0

and rejects the null hypothesis 1f the observed r 1s either less
than r, or greater than ry. It 1s apparent that the computations
involved in (4.1.1) or (4.1.2) are gquite lengthy espécially if n,
and np are falrly large. However, it is belleved that if both ny
and ng are larger than 10, the distribution of r becames approxi-

mately normal (refs. 7 and 17) with a mean

2nan
r n, + ng

and a variance

5 > 2nAnB(2nAnB -np - nB)
r

- 2
(nA + nB) (nA + np - 1)
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The approximation is improved as np and np become large. For
N = 10,000, it is reasondble to expect the approximation to be fairly
good since np and ng will be quite larger than 10. Thus to test the

null hypothesis in question, consider the statistic

Z = r_;r_“n (4.1.6)

where Z 1s the value of a random variable having the standard normal
distribution, and r 1s the observed number of runs of a given sequence.
For some probability o for Type I error, the null hypothesis is
rejected if the computed Z 1s less than Zl/gm or if it 1is greater
than Zl_%cm of the standard normal distribution. ReJjection implies

that the given sequence may be declared nonrandom based on the test on
total number of runs. This test has been performed on each of the

200 sequences generated for this study with a equal to 0.05. The
results, found in tables (4.10), (4.11), and (4.12), indicate the
following:

(a) For the one-hundred sequences generated by equation (2.1.4),
four sequences were rejected and declared nonrandom. By this result,
there is an indication that the uniform number generator (2.1.4) generates
sequences that appear to be random based on the observable number of total
runs.

(b) For the fifty sequences generated by equation (2.2.1), three
sequences were rejected and declared nonrandom. This indicates that
equation {2.2.1) generates sequences that appear to be random based on

the observable number of total runs.
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(c) For the fifty sequences generated by equation (2.2.2), there
were no rejections. The indication is the same as in (a) and (b);
however, further testing,as will be discussed in the following section,
is recommended.

One should note here that the preceding test based on total number
of runs is somewhat poor because it is effective in detecting nonrandomness
only when a given sequence contains too many or too few runs. Situations

could arise when a given sequence produces the correct number of total

runs, bubt contalns serious types of nonrandomness. For this reason, a
test based on counting the number of runs of various lengths will be
discussed in the following section.

4.2 Runs of Various Lengths

it was pointed out in the previous section that a test based on the
total number of runs in a sequence of numbers can be deceiving. However,
a test based on counting the number of runs of various lengths is less
likely to be deceived because the observable number of total runs is
subdivided into runs of various lengths that can be easily compared to

their corresponding theoretical expectations. A run above or below the

th
s‘l'
8
wm

pecified distribution function is defined as follows: If

mean o cllo

1 successive elements of a given sequence of numbers are greater (or
less) than the mean, and both the preceding and following elements are
less (or greater) than the mean, this is recorded as a run of length 1

ebove (or below) the mean.

Iet 2y ,,
A,l B,1

T
o

~
o

above and below the mean, and my, mp the total number of runs of all
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lengths above and below the mean, respectively. If r 1s the total

number of runs as defined in 4.1, then
r =my +mg+ 1 (J+.2.l)

where

max 1

my = }: Ta,1

o~J
i

2

m_

“B

max
T\

) r. .
A 'B’ ¢

o

1

The theoretical expectations of Ta2 and rg.1 for any ! may
2 Hd

be easily computed by the following relation (ref. 8):

-1+
E(ry ;) = N-t1+3 i =A,B (k.2.2)
’ 1+2
2
where N is the number of elements in each generated sequence. An
arbitrary size N = 10,000 was chosen for each sequence to be tested

for this study; therefore, the expectations of runs above or below the

mean follow:

E(ri’1=l) = 1250.25 E(ri,l=5) = 78.11 E(ri,2=9) - 4.88
E(ry 3-p) = 625.06 B(rs 1o6) =39-06  B(ry 300) = 2.bk
E(rs 123) = 312.50 E(ry,1=7) = 19.52  E(ri,1=11) = l.22
E(ry 3.) = 156.23 E(ry ;-8) = 9.76 E(ry 1310) ¥ 1.00

1= A,B
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Consider testing the null hypothesis that the deviations between the
observed number of runs of any length and their corresponding theoretical
expectations are fairly small. By this hypothesis one implies that if
the difference for each and every length between observed and expected is
small, it is reasonable to believe that an indication of randomness is
present for a given sequence of N observations. To test such a hypothe-
sis, it has been the practice of many to use Karl Pearson's chi-square
goodness~of-fit test (ref. 16). (For a fuller discussion of this test,

see Chapter V.) Notice here that one's interest is not to test the null

hypothesis that the observed number of runs of the various lengths has
some specified distribution function. Rather, the primary interest is
to determine whether the difference between observed and expected is
significant to warrant the existence of nonrandomness in a given sequence
of observations.

Let ri,1 be the observed number of runs of length 1, and let the
corresponding theoretical numbers of runs that should be in the AL

class be E(ri’z). Then from the k = 12 classes, the test statistic

}" [iZ'E(rl Z)]

i = A,B (4.2.3)
1 Z)

is approximately distributed as a chi-square with k - 1 degrees of
freedom since no parameter estimation is needed. Hence, to test the null
hypothesis in question, the value of T 1is determined and compared with
the upper tail of the chi-square distribution with k - 1 = 11 degrees

of freedom and a given level of significance. The null hypothesis is
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rejected whenever 7T eXxceeds this critical region. Rejection would be
sufficient to suspect nonrandomness in a given sequence of numbers.

This test was computed for runs above or below the mean for each of
the 200 sequences. The results appear in tables (4.20), (%.21), and
(4.22). The apparent conclusions are the following:

(a) For the 100 sequences generated by equation (2.1.4), there were
six rejections for runs above and seven for runs below of all lengths.
This number of rejections is to be expected. Hence, there is an indica-
tion that equation (2.1.4) generates sequences that appear to be random
based on this test.

(b) For the 50 sequences generated by equation (2.2.1), there were
six rejections for runs above and four for runs below of all lengths.
Hence, the apparent conclusion is similar to (a).

(c) For the 50 sequences generated by equation (2.2.2), there were
10 rejections for runs above and only 2 for runs below of all lengths.
Because of the significant difference between these two numbers, it
would seem to suggest that equation (2.2.2) tends to produce exceedingly
more runs than expected of values that are greater than the mean. Hence,
some nonrandomness appears to exist.

4.3 Serial Correlation

If a given sequence of numbers is truly random, each element should
be independent of any other. That is to say, the correlation between an
element x; in the sequence and another element Xj4+p should be

negligible.
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. Iet x7, xp, « . ., Xy Dbe the sequence to be tested for randomness.

) Let uj be equal to =xj,, for i=1,2, ..., N - p. For this

arrangement, the corresponding values of x and u are indicated in

table 1.
TABLE 1
X Xl X2 ¢ s Xi « s » XN_p
U X1+p X2+p e Xitp . e Xy

The correlation coefficient computed by using the configuration of table 1
is called the serial correlation coefficient with lag p. Standard
regression and correlatlion methods are not applicable here because the
uj's no longer constitute a random sample for any fixed set of x's.

A nonparametric method based on serial correlation can be derived
if one assumes that all possible permutations of a given sequence of
numbers are equally probable. However, the number of permutations become
extremely numerous for N at all large; therefore, it is necessary to
use an approximation for the distribution of the serial correlation

coefficient when N is large.

Referring to table 1, N - p pairs of elements can be formed.

Based on these pairs, the serial correlation coefficient may be expressed
in the form
.. N-p
Z X4Xq4p - (N - p)XT
- p =22 (4.3.1)

(N - p)s,sy,
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where

M1
>~
g

m
1

Nep=-1

For this study, serial correlation coefficients of lags one through
fifteen, »p =1, 2, . . ., 15, have been computed. This range is
believed to be sufficient to detect any existence of interdependence
among the elements of a segquence being tested.

Consider the use of some spproximation for the distribution of the
serial correlation coefficient. For N = 10,000, it is doubtful whether
the quantities X, T, sy, s, Wwill be appreciably altered for any lag
p=1 2, . . ., 15. However, the quantity that will be affected

significantly from one lag to another is the sum %{T therefore,

XiXit+p?

i=1
it would be more beneficial to study the distribution of this sum rather

than the Aigtribution of £ itself. Iet
=P
R = /} XiX (.3.2)
[, “iti+p
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Assume that the elements of a generated sequence being tested constitute

a randam sample from a distribution possessing low order moments - which

is the case here - then A. Wald and J. Wolfowitz (ref. 9) have shown

that R 1s a random varieble approximaetely distributed as a normal for

large N with mean

and variance

2
E(R) = 5 -5 (%.3.3)
N-1

822 - Sk Sl4 - 381252 + 45155 + Sgp - 25k 5
var(R) = + - E°(R)
N - 1 (N - 1)(N - 2)
(L.3.4)
where N
k
S = Z Xy (4.3.5)

i=1

Thus, to test the null hypothesis of zero serial correlation consider the

standard normal random variable

Calculate and compare

_ R - E(R)
=

7, (4.3.6)

Z to the left as well as the right tail of the

standard normal -~ with a probability 0.05 for Type I error - because

both large positive or large negative serial correlations are of interest.

Reject the hypothesis if Z exceeds these limits and conclude that some

element dependence is present.

The serial correlation test 1s sensitive to periodicities caused by

the dependence between elements ©p spaces apart and should offset any
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deficiency in the runs test. As before, all sequences were subjected
to this test with the results appearing in tables (4.30), (%.31), and
(%.32). The results indicate the following:

(a) For the 100 sequences generated by equation (2.1.4), no one
lag was rejected significantly more than any other. The most rejections
noted for any cne lag of the fifteen considered were ten for lag p
equal to two. The overall average number of rejections for any one lag
was six percent, and this, of course, is within the framework of the

statistical test. Hence, it 1g apparent that n

(@]

by the dependence between elements seem to exist.

(v) For the 50 sequences generated by equation (2.2.1), the most
rejections noted for any one lag were four with the overall number of
rejections for any one lag being approximately equal to five percent.

Hence, for the normal random number generator
1/2
X1 = (-2 In Uy) /251 2nUp

no element dependence appears to exist.

(¢) Quite a different result was noted for the sequences generated
by equation (2.2.2). An overvhelming number of %1 rejections occurred
for lag p equal to one. Thls fact indicates strongly the existence
of element dependence one space apart. Hence, it would be reasonable to

conclude that the normal random number generator
1/2
X5 = (-2 1n Uy) / cos 21U,

contains serious types o

~
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4.4 Numerical Results

All tests described in this chapter were performed on each and every
one of the two~-hundred (200) sequences generated for this study. All
necessary calculations were made on the IBM-7094 computer with the results
of the tests having been rounded for presentation. ReJjection is indicated
by an asterisk. The critical values for the appropriate random variables
may be found under each table. Each table is identified with respect to

its contents.
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TABLE 4.10

RESULTS OF THE TEST ON TOTAL RUNS OF 100 SEQUENCES OF SIZE 10,000 EACH

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4)

Sequence no- (Obs. no.rof runs) | (Mean i? runs) | (S.D. :li: runs) AR :‘rur
1 5052 5000.82 50.00 1.024
2 5019 5001.00 50.00 0.360
3 4960 5000. bk 49.99 ~0.809
i 5040 5000.92 50.00 0.782
5 S04k 5000.97 50.00 0.861
6 5010 k995,01 kg.94 0.300
7 5051 5000. 81 50.00 1.004
8 5008 5000. Th 49.99 0.145
9 k997 5000.58 49.99 ~0.072

10 5013 5000.02 49.99 0.260
11 5002 5000.18 49.99 0.036
12 5004 5000. 96 50.00 0.061
13 5110 5000.90 50.00 2,182*
14 4588 5000.90 50.00 -0.258
15 5024 5000.99 50.00 0.460
16 5010 5001.00 50.00 0.180
17 5043 5000.68 k9,99 0.846

Critical values for the 0.05 probability level are *1.96.
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TABLE 4.10

RESULTS OF THE TEST ON TOTAL RUNS OF 100 SEQUENCES OF SIZE 10,000 EACH

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) - Continued

Sequence no. T Hr r I Hr

(Obs. no. of runs) | (Mean of runs) | (S.D. of runs) Or
18 Lolg 5000.99 50.00 -1.0%0
19 4986 4999.3k 49,98 -0.267
20 5000 5001.00 50.00 -0.020
21 Lg79 5001.00 50.00 -0.kko
22 5022 5000.80 50.00 0.42k
23 4998 5000.63 49.99 -0.053
2k 5038 5000430 49.99 0.754
25 4960 5000. k4 h9.99 -0.809
26 5063 5000.70 k9,99 1.2k6
27 Lo7h 5000.30 49.99 -0.526
28 5024 5000. 48 %9.99 0.470
29 5060 5001.00 50.00 1.180
30 5048 5000.92 50.00 0.942
31 k937 5001.00 50.00 -1.280
32 4998 5001.00 50.00 -0.060
33 5023 4998.88 49,98 0.483
34 5056 5000. 82 50.00 1.104

Critical values for the 0.05 probability level are *1.96.
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TABLE 4.10

RESULTS OF THE TEST ON TOTAL RUNS OF 100 SEQUENCES OF SIZE 10,000 EACH

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) - Comtinued

Seuence n0+ | e mno. of runs) | (Mean o runs) | (8.D. ot L o
35 4979 5000.99 50.00 ~0.4k40
36 5029 5000.50 kg.99 0.570
37 5015 5000.13 k9.99 .378
38 5064 5000.99 50.00 1.260
39 kot8 4995.08 49,9k -0.342
ko 4939 5000.96 50.00 -1.239
b1 5026 5000.08 49.99 0.519
4o 5021 5000.97 50.00 0.ko1
) 43 ko6l 5001. 00 50.00 -0.800
” i 5012 5001.00 50.00 0.220
45 5036 5000. 7T 50.00 0.705
46 Lg76 5000.93 50.00 -0.499
b 5017 5000.65 k9,99 0.327
L8 5027 4999.84 49.99 0.543
Lo 5001 4995.15 kg, ok 0.117
50 k999 5000.35 49.99 -0.027
51 5039 5000.65 k9,99 0.767

Critical values for the 0.05 probability level are *1.96.
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TABLE 4.10

RESULTS OF THE TEST ON TOTAL RUNS OF 100 SEQUENCES OF SIZE 10,000 EACH

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) - Continued

Seauence 1o | b wo. of yuns) | (Mean 5 runs) | (S.D. P rung) | - - ;rur
52 506k 5000.78 50.00 1.264
53 4966 5001..00 50.00 -0.700
L Lg56 5000.99 50.00 -0. 900
55 Lolio 5000.73 49.99 -1.215
56 5040 5000.30 49.99 0.79%4
57 5005 5001.00 50.00 0.080
58 hosl 5000. 82 50.00 ~0.996
59 4933 5000.99 50.00 ~1.360
60 5041 5000. 9% 50.00 0.801
61 5173 5000.85 50.00 3, 443%
62 5160 5000. 94 50.00 3.181*
63 5010 5001.00 50.00 0.180
6l 5019 5000.97 50.00 0.361
65 5059 k999, T2 49.98 1.186
66 4986 5001.00 50.00 -0.300
67 5037 5000. 93 50.00 0.721
68 5005 5000.98 50.00 0.080

Critical values for the 0.05 probability level are +1.96.



- 46 -

TABLE 4.10

RESULTS OF THE TEST ON TOTAL RUNS OF 100 SEQUENCES OF SIZE 10,000 EACH

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) - Continued

’ErSequence no. r Mr Oy g = L= Hr

(Obs. no. of runs) | (Mean of runs) | (S.D. of runs) Or
69 5002 5000. T4 k9,99 0.025
70 5033 5000.28 49.99 0.655
71 Lo75 5000.838 50.00 -0.518
T2 5045 5000. 97 50.00 0.881
73 4980 5001.00 50.00 -0.420
Th 5069 4999.81 49.99 1.384
(& La8o 5000.82 50.00 -0.416
76 5026 5000.50 49.99 0.510
T7 k953 5000. T4 49.99 -0.955
78 4ogo 5000.90 50.00 -0.178
79 5022 5000.66 49,99 o.ko7
80 5088 5000. 94 50.00 1.7%1
81 k996 5000.97 50.00 -0.099
82 4980 5000.99 50.00 -0.420
83 5000 5000.26 49,99 -0.005
8l LoTh 5000.99 50.00 -0.540
& 5027 5000.98 50.00 0.521

Critical values for the 0.05 probability level are +1.96.
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TABLE 4.10

RESULTS OF THE TEST ON TOTAL RUNS OF 100 SEQUENCES OF SIZE 10,000 EACH

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) - Concluded

Sequence no- (Obs. no.rof runs) | (Mean i? runs) | (S.D. Z? runs) | 2T - ;rur
86 5067 5000.73 49.99 1.326
87 5116 5000.77 50.00 2.505%
88 5074 5000. 84 50.00 1.463
89 5003 4999.19 49.98 0.076
90 5049 4999.72 k9.98 0.986
91 4993 5000. 70 49.99 -0.15%
92 5008 5000. 84 50.00 0.143
93 hgo2 5000. 92 50.00 -0.178
ol Lo50 5001.00 50.00 ~1.020
5] Lo87 5000.98 50.00 ~0.280
96 5023 5001.00 50.00 0.440
97 5006 5000.02 49,99 0.120
98 5029 5000.18 %5.99 0.577
99 4978 4999.38 49.98 -0.428

100 502k 5000.86 50.00 0.463

Critical values for the 0.05 probability level are *1.96.
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TABLE L4.11
RESULITS OF THE TEST ON TOTAL RUNS OF 50 SEQUENCES OF SIZE 10,000
EACH GENERATED BY EQUATION (2.2.1)
Sequence no. r Hr Or 7 = L= Hr

(Obs. no. of runs) |(Mean of runs) |(s.D. of runs) Or

1 Los6 5000.99 50.00 ~0.900
2 hg66 5001.00 50.00 -0.700
3 5064 5000.78 50.00 1.26k4
L 5039 5000.65 49,99 0.767
5 Lo8T7 5000.99 50.00 -0.280
6 50uL 5000.81 50.00 0.864
7 5005 5000.98 50.00 0.080
8 4o87 5000.98 50.00 -0.280
9 4981 5001.00 50.00 -0.400
10 5058 5000.78 50.00 1,14k
11 5031 5000, kh Lg.99 0.611
12 5023 5001.00 50.00 0.4k4o
13 4983 5000.96 50.00 -0.359
1L 5056 5000. 84 50.00 1.103
15 5006 5000.02 49,99 0.120
16 5000 5001.00 50.00 -0.020
17 5029 5000.18 49.00 0.577

Critical values for the 0.05 probability

level are *1.96.
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TABLE 4.11

RESULTS OF THE TEST ON TOTAL RUNS OF 50 SEQUENCES OF SIZE 10,000

EACH GENERATED BY EQUATION (2.2.1) - Continued

Sequence no. * Hr Or - My

(Obs. no. of runs) | (Mean of runs) [(S.D. of runs) Or

18 Logh 5000. 9 50.00 -0.139

19 L976 5000.61 49,99 -0.492

20 %995 5000.80 50.00 -0.116

21 4978 4999.38 49,98 -0.428

22 5072 5000.99 50.00 1.420

23 502k 5000.86 50.00 0.463

2k ho62 5000.35 kg.99 -0.767

- 25 Loko 5000.73 h9.99 -1.215
I 26 5040 5000.30 49.99 0.79%
’ 27 5005 5001.00 50.00 0.080
28 Lot 5000.82 50.00 ~0.996

29 4933 5000.99 50.00 -1.360

3 30 5041 5000. 9% 50.00 0.801
51 5173 5000. 85 50.00 PR
32 5160 5000. 9k 50.00 3.181*

33 5010 5001.00 50.00 0.180

3k 5019 5000. 97 50.00 0.361

Critical values for the 0.05 probability level are +1.96.




TABIE 4.11

RESULTS OF THE TEST ON TOTAL RUNS OF 50 SEQUENCES OF SIZE 10,000

EACH GENERATED BY EQUATION (2.2.1) - Concluded

Sequence no. r By O y o L= Hr

(Obs. no. of runs) |(Mean of runs) { (S.D. of runs) Or
35 5059 4999.72 49.98 1.186
36 4986 5001.00 50.00 -0.300
37 5037 5000.93 50.00 0.721
38 5005 5000.98 50.00 0.080
39 5002 5000. Tk 49.99 0.025
%o 5033 5000.28 49.99 0.655
L1 Lo 5000.88 50.00 -0.518
4o 5045 5000.97 50.00 0.881
43 4980 5001.00 50.00 -0.%20
Ly 5069 4999, 81 k9,99 1.384
45 5116 5000. 77 50.00 2.305%
L6 5000 5000.26 49.99 -0.005
L7 Lok 5000.99 50.00 ~0.540
48 4996 5000.97 50.00 ~-0.099
kg 5022 5000.66 49,99 0.k27
50 4950 5001.00 50.00 -1.020

Critical values for the 0.05 probability level are +1.96.
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TABLE 4,12
RESULTS OF THE TEST ON TOTAL RUNS OF 50 SEQUENCES OF SIZE 10,000

FEACH GENERATED BY EQUATION (2.2.2)

Sequence no. r Hr Or 7 = Lo Hr
(obs. no. of runs) | (Mean of runs) | (S.D. of runs) Or
1 4993 5000.98 50.00 -0.160
2 5018 5000. 86 50.00 0.343
3 %997 5000, 99 5C.00 -0.080
| L 5004 5000.88 50.00 0.062
> Lgkg k999, L7 49,98 -1.010
6 4968 5000.90 50.00 -0.658
7 ho5T 5000. 71 k9,99 -0.874
S 8 Lol k999,27 49.98 -1.046
. 9 4995 5000.70 49.99 -0.114
. 10 4965 5000.92 50.00 -0.718
il k993 5000.93 50.00 -0.159
12 4959 5000. 77 50.00 -0.835
13 h965 5000.93 50.00 -0.719
1k 5065 5000.92 50.00 1.282
15 5020 5000.88 50.00 0.383
16 4986 5000.86 ' 50.00 =0.297
17 5073 5000.97 50.00 1.4k

Critical values for the 0.05 probability level are *1.96.
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TABLE L.12

RESULTS OF THE TEST ON TOTAL RUNS OF 50 SEQUENCES COF SIZE 10,000

EACH GENERATED BY EQUATION (2.2.2) - Continued

Sequence no. (obs. no.rof runs) | (Mean Z? runs) |(s.D. gli: runs) z= L;}il:
18 5023 5000.99 50.00 0.440
19 5036 4998.88 49,98 0.743
20 ho62 5000.93 50.00 -0.779
21 hok3 5000.3% 49.99 -1.147
22 5062 5000.65 k9,99 1.227
23 4996 5000.16 kg.99 -0.083
2k 5025 5000. 94 50.00 0.481
5} 5024 5000.95 50.00 0.1461
26 4996 5001.00 50.00 -0.100
27 5043 5000.98 50.00 0.841
28 5003 5000.98 50.00 0.040
29 5008 5000.89 50.00 0.142
30 5065 5000.82 50.00 1.284
31 5011 5000.99 50.00 0.200
22 4959 5000.65 k9.99 -0.833
33 5035 5000.16 49.99 0.697
3k 501k 5000.88 50.00 0.262

Critical values for the 0.05 probability level are *1.96.
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TABLE 4.12
RESULTS OF THE TEST ON TOTAL RUNS OF 50 SEQUENCES OF SIZE 10,000

EACH GENERATED BY EQUATION (2.2.2) - Concluded

Sequence no. * Hr Or g o L= Pr
(0Obs. no. of runs) | (Mean of runs) | (S.D. of runs)
35 5019 5000.33 49.99 0.374
36 4987 5001. 00 50.00 -0.280
37 5057 5000.60 %9.99 ~ 0.728
38 4960 5000.99 50.00 -0.820
39 5048 5000.10 49.99 0.958
ko 5019 5000.68 k9,99 0.366
b1 4913 5000.75 50,00 -1.755
b2 5065 5001.00 50.00 1.280
. 43 5079 5000.50 49.99 1.570
L lgo8 5000.77 50.00 =0.055
45 5011 5000.63 49.99 0.207
L6 Lg76 5000. 80 50.00 -0.496
b 5067 5000. 7k 49,99 1.325
48 5043 4999.59 49.98 0.869
kg 50k42 4999.L5 k9,98 0.81
50 4928 5000. 97 50.00 -1.460

Critical values for the 0.05 probability level are *1.96.
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TAELE 4.20
RESULTS OF THE TEST ON RUNS ABOVE AND BELOW THE MEAN FOR 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.h4)

Sequence No.

1 2 3 I 5 6 7 8 9 10
5 Abo;re 8.759 3.83% | 1h.525 | 11.293 | 10.324 | 11.520 |11.609 3.418 3.602 | 13.260
X
Below | 9.624 2.848 |16.348 8.201 | 15.352 | 12.936 9.690 5.286 | 12.887 | 10.475
Segquence No
11 12 13 1k 15 16 17 18 19 20
5 Above |19.468 8'.'713'2V 18.543 | 15.896 5.176 8.184 9.313 9.043 { 14,349 3.068
N !
Below | 6.733 | 13.497 | 14k.945 | 25.563% | 4.865 | 11.820 [16.547 | 16.777 | 16.048 | 20.651*
Sequence No.
21 22 23 2k 25 26 27 28 29 30
5 Above | 8.741 | 13.265 5.807 | 11.360 | 14.523 | 12.065 | 1k.598 8.482 6.496 8.013
X
Below | 16.526 5.535 |16.173 5.750 | 16.348 | 27.605% | 7.685 | 13.336 | 11.609 | 14.627
Sequence No.
31 32 33 3k 35 36 37 38 39 ko
- Above | 6.496 2.779 | 10.998 | 16.552 426 | 13.136 4,692 | 10.43% | 11.971 { 11.627
X
Below | 10.856 | 21.518% [13.30L | 15.471 | 15.399 | 11.096 |16.759 7.935 | 15.011 7.566
Sequence No.
41 Lo 43 b us5 L6 b7 48 ko 50
- Above | 10.975 5.013 |13.400 | 22.626* | 11.410 | 15.045 |[11.936 | 11.735 | 12.167 | 20.316%
X
Below | 10.412 5.1k 56.555 8.23% 5.262 S.758 [1i.051 8,278 1 1z 1h £.607

Oritical value of )(2 for 0.05 probability level with 11 degrees of freedom is 19.7.
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TABLE 4,20
RESULTS OF THE TEST ON RUNS ABOVE AND BELOW THE MEAN FOR 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) - Concluded

Sequence No.

51 52 53 Sk 55 56 57 58 59 60
o | Avove 12.310 | 3.272 |11.540 8.013 | 11.460 | 11.77H 9.622 9.091 | L.194 8.896
X
Below | 10.462 8.613 T.743 9.570 | 15.433 5.793 | 23.506% | 16.863 9.74%1 | 15.155
Sequence No.
61 62 63 6L 65 66 67 68 69 70
o | Above 17.840 | 15.037 3,657 5.888 4.575 6.057 6.434 3.392 2.934 | 11.297
X
Below | 14.19% | 17.39 3.838 5.447 | 10.925 | 23.540% | 5.006 1.949 | 14,066 5.967
Sequence Na.
Tl T2 3 Th ™ 76 7 78 79 8o
5 Above | T7.905 6.459 | 11.741 6.903 5.354 L, gho [18.025 | 22.229* ] 12.183% | 16.436
X
Below | 11.008 5.146 | 26.162% |12.107 T7.715 4,606 9.706 | 11.550 | 10.952 | 16.683
Sequence No.
81 82 83 84 & 86 87 88 89 90
- Above [25.128% | 9.802 | 21.194* {12.617 7.890 9.455 |18.950 3.594% | 23.970%] 6.911
X
Below [12.201 {15.287 6.130 1ik.277 | 13.128 9.943 |18.661 9,792 6. Thk 7.598
Sequence No.
91 92 93 o 2] 96 97 98 99 100
5 Above | 3.868 5.786 6.337 4.4 9.372 5.401 6.730 6.255 | 13.968 | 13.308
X
Below |14.595 5.716 5,610 (Y22 | 12:903 6.290 | L6.b4L 9.904 | 16,980 6.023

Critical value of X2 for 0.05 probahility level with 11 degreer of freedom i/ 19.7.
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TABLE 4.21

RESULTS OF THE TEST ON RUNS ABOVE AND BELOW THE MEAN FOR 50 SEQUENCES

GENERATED BY EQUATION (2.2.1)

Sequence No.

1 2 3 4 5 6 7 8 9 10
R Above | 9.570 T.T43 8.613 | 10.462 | 21.784* | 15.290 | 27.020* {12.563 | 20.684*| 15.913
v :
Below | 8.013 | 11.5%0 3,272 { 12.310 8.086 8.878 | 14.969 9.272 4,041 | 16.724
Sequence No
11 12 13 14 15 16 17 18 19 20
5 | Above 10.994 6.235 {16.99% | 15.135 | 16.44%1 | 21.441% | 5,904 [12.479 | 18.423 9.975
X
Below |13.18 5.401 7.616 | 17.80 6.730 2.948 6.255 21.615%| 7.076 | 33.566%
Sequence No.
21 22 23 24 25 26 27 28 29 30
° Above [16.980 | 13.028 6.023 | 16.458 | 15.433 5.793 | 23.506% | 16.863 9.7%1 | 15.155
X
Below | 13.968 6.119 | 13.308 | 1k.780 | 11.460 | 11.774 9.622 9.091 ho194 8.896
Sequence No.
31 32 33 3k 35 36 37 38 39 4o
o | #bove | 141G 1 17.3%5 | 3.838 | 5847 | 10.925 | 12.5%C 4 5.006 | 1.949 ) 1h.066 | 5.967
X
Below |17.840 | 15.037 3,657 5.888 4575 6.057 6.434 3.392 2.934 | 11.297
Sequence No.
15 4o 43 Ly hs 46 g 48 kg 50
o | Above 11.008 5.146 | 26.162% | 12.107 | 18.661 6.130 |1k.277 | 12.201 | 10.952 7.922
b Below [ T.500 G555 (ii.Th £.903 ¢ 18,950 {oi.iohx lap fa7 125, 108x] 10 182 b k1

Critical value

of X2 for 0.05 probability level with 11 degrees of freedam is 19.7.
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TABLE 4.2

2

GENERATED BY EQUATION (2.2.2)

Sequence No.

1 2 3 b 5 6 T 8 9 10
R Above | 16.679 6.353 | 10.830 ]13.916 | 25.485% | 7.880 [ik.15h | 25.226% [17.955 | 21.598%
X

Below | 8.198 | 13.743 9.500 5.59 | 13.349 6.670 k178 | 13.512 [13.677 | 15.616
Sequence No.

11 12 13 14 15 16 17 18 19 20
5 Above | 14.856 {19.079 | 23.353* | 7.958 | 14.529 |22.435*% | 7.884% |17.123 |15.014 8.536
X

Below | 8.036 7.415 8.686 7.664 5.163 | 12,298 9.256 7.893 12,584 9.106
Sequence No.

21 22 23 24 25 26 27 28 29 30
5 Above | 23.719* | 9.205 | 27.595* { 15.081 5.730 | 22.715%| 9.646 | 17.790 9.02k 6,641
X

Below | 16.275 6.888 | 12.481 4,808 | 15.036 7.548 7.662 | 24,815% | 5,432 9.007
Sequence No.

31 32 33 3k 35 36 37 38 39 Lo

2 Above §18.070 5.130 | 4.137 117.578 | 10.003 7.062 | 13.512 8,050 | 17.063 | 12.31€
Below | 21.055% | 6.052 8.569 1 13.031 L.097 | 11.851 7.405 9.160 8.764 £.270
Sequence No.

L1 Lo L3 b 45 46 i 48 ig 50
| Above 25,316% | 9,330 | 11.163 | 17.682 | 14.84%2 | 10.97% | 10.204 [ 17.199 | 17.716 | 23.45kx
XA_

Below | 27.151 [ 11.1h5 | 16.337 1 10.851 ) 10.018 | 7.M87 © 7.710 | 16.27A 1 1A.A00 1 R.0AT

Critical value of X2

for 0.05 probability level

with 11 degrees of freedom is 19.7.
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TABLE %.30

RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4)

Seq. No.f 1 ‘ 2 3 4 I 5 ' 6 | 7 I 8 I 9 I 10
Leg p z =% -Ui 2
1 -1.377 |-0.969 | 1.237 |-1.045 |-1.082 |-1.015 {-0.835 |-0.769 | -0.007 | -1.276
2 -0.282 | 0.123 | -2.698% |-1.357 | 1.022 |-1.307 |[-2.443* | 0,286 | 1.338 | -0.910
‘ 3 N -o.32i~7 ;i:gé; ;.092 0.34k2 0.091L 0.039 1.438 |-1.300 | -1.151 1.403
b -0.300 | 0.733 | -1.861 }|-0.083 | -0.973 |-0.706 o.7k2 | 0.592 | 0.438 | -1.136
5 =0.531 0.042 | -0.103 |-1.264 | -0.541 [-0.120 |-0.776 |-0.057 0.235 0.186
6 -1.101 C.334 | -1.690 }-0.611 }-1.701 2.115% | 0.210 |=-0.39C 0.263 1.475
T -1.604 1.192 0.453 | -~0.504 1.341 |-0.428 0.126 1.376 | -0.956 | -0.316
8 0.412 |-1.886 0.171 0.191 | -2.586* |.1.889 1.123 |-1.453 | -0.488 | -1.198
9 ' =1.979% 1.1.811 {-0.004 |~0.755 1.573 1.209 |-1.676 |-1.999%| -0.767 | -0.919
10 1.028 |-0.262 |-2.183% {-0.379 | ~-0.760 {-0.564% [=1.009 {=-0.142 | -0.847 | -0.250
1 -1,131 | 0.318 | 0.521 |[-0.713 | 1.38% [-1.397 [ 0.157 |~0.002 | -0.585 | -0.kk9
12 0,140 | 0.0BL | 0.285 | 0.600 | 0.265 |~1L.4735 {-0.556 | 0.282 | -0.738 | 2.480*
13 0.5% |-0.2k2 0.269 |-1.64k } 1,241 0.974% | =0.119 |-0.053 | ~0.332 0.862
1k -0.120 |-0.06k 0.347 1.463 1.918 |-1.k22 0.505 o447 | ~0.470 1.511
15 ~1.304 0.137 0.437 |-1.489 | -1.870 0.208 |-0.887 {-0.031 1.105 | =1.739
Critical values for the 0.05 probebility level are +1.96.
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- TABLE 14.30
RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 100 SEQUENCES
GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) - Continued
Seq. No.| 11 [ 12 I 13 ] 1k I 15 I 16 ] 17 L18 l 19 J 20
Lag p 2<% -o‘f;: 2

1 -0.450 | =1.289 | -2.314* | 0.027 |-0.415 }-1.437 |-1.203 0.466 0.5% |-1.253
2 -0.178 | -0.561 } -2.275% |-0.919 | -1.351 |-0.864 0.628 1-1.801 | -2.941* |-~0.560
3 -0.888 0.297 | «0.507 |-0.920 |-0.780 0.159 0.392 0.213 1.296 |~1.331
4 0.218 | -1.046 0.138 0.606 | -0.464 |-1.256 |-1.213 {-0.515 ~1.195 }-~0.735
5 0.277 | 0.866 | -0.256 |-1.384 |-0.325 | 0.733 |-0.77TL |-0.856 | ©.25 | 0.065
6 0.262 | 0.819 | -0.950 |-l.h20 | 0.700 | 0.976 |-1.865 | 0.924 | -1.550 {~0.228
i 7 +1.136 | 0.664 [ -0.707 |-0.246 | 0.605 | 0.okk | 1.12% |-0.985 | 0.310 | 2.065*
- 8 0.865 0.264 | -1.b21 |-0.583 |-1.591 | 0.072 }|-2.957* | 1.646 | -0.038 | 0.250
7 9 =1.920 0.149 | -0.016 |-1.813 0.019 0.366 1.647 0.8% | -0.664 |~1.438
10 -1.853 | -0.260 | -1.628 | 1.008 | 1.555 |-0.bop |-1.069 [-1.585 | -2.h29% |.1.518
11 -1.288 | -0.328 1.159 | -0.19% }-1.707 | -0.207 1.271 | -0.059 0.593 0.808
12 1.119 1,183 | 21,935 0.47% | 20.hob 1.376 0.087 0.434 0.673 | ~0.471
13 1.005 | =1.9%0 | 0.760 | ~0.376 | =0.406 | -1.861 | -1.311 [-1.803 | 0.318 |-0.553
1k -0.951 0.189 | «0.913 | =2.303* | «-1.445 | -0.054 1.904k {-1.952 | -0.426 0.226
) 15 -0.393 | -0.360 | ~1.642 | -0.128 1.449 | -0.701 | ~1.768 1.h04 0.327 1.172

Critical values for the (.05 probability level are *1.96.
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TABIE 4,30
RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.%) - Continued

Seq. No.{| 21 l 22 I 23 I ok I > I 26 l 27 I 28 ' 29 4;L 30
5 - R = E(R)
Lag p 9R
1 -0.759 | =0.784 | -0.252 |-1.864 | 1.237 |-2.285% |-0.990 {-0.T64 |-2.069%; -1.206
2 =1.963% | =1.522 0.912 {-0.3hh ! _2 BOB* 1 _2.355% 1 .2.T3T% | ~0.343 | -0.438 1.021
3 -0.891 | =0.290 | ~0.978 | 1.325 | 1.092 |-0.057 |-0.497 }|-0.225 | 0.323 | 0.001
Ly 0.695 |-0.188 | -1.598 0.406 |-1.861 1.939 0.539 0.023 |-1.056 | -1.228
5 -0.09% {=0.613 | -0.159 { 0.163 |=0.103 |=0.356 |-0.829 }-0.774 | 0.807 | -0.593
6 -2.122% | ~0.641 0.097 1.259 | -1.690 |[-0.913 |-1.707 |-0.291 0.395 { -1.647
7 0.596 | =0.010 | ~0.52k |-1.115 0.453 {-0.573 | -0.540 |-0.573 |-0.048 1.150
8 0.067 | 0.575 | ~1.649 |-0.305 0.171 | -0.78% | ~0.052 |[-1.028 |-0.045 | -2.751*
9 -0.723 | -0.946 | -0.646 |-0.879 |-0.00k |-0.281 | -0.455 0.006 | 0.18% 1.656
10 0.297 |-0.598 | -0.540 0.214 | -2.18%* [~1.070 | -0.083 |-2.166% | «0.475 | ~1.007
11 ~0.670 |~1.324 | -1.093 |[-0.%06 0.521 | 0.926 |-1.182 | 0.328 |.0.413 1.532
12 ~0.132 | =0.022 | -2.032% | 1.912 0.285 |-1.077 | -0.382 |-0.753 0.926 0.228
13 0.605 |-1.724 | -1.563 0.622 0.269 0.76k 1.073 | =2.077* | =1.663 | -1.213
1h -1.526 0.712 | -0.840 1.966% [ 0.347 [-0.980 | -0.768 |-0.900 | ~0.202 1.93h
15 -0.143 | -1.264 1.269 |-0.062 0.437 0.410 | -0.760 0.38%5 | -0o.7Th | -1.689

Critical values for the 0.05 probability level are +1.96.
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TABLE 4.30
RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENHRATOR (2.1.4) - Continued

Seq. No.| 31 R ENERERERE: SERNE
7 - B= E(R)
Lag p OR
1 c.h71 | .1.348 | -1.530 | -2.288% | o.2%2 | -0.561 |-0.392 1-1.535 |-0.349 | 0.503

03 -0.666 | -0.804 1.510 {~1.85 0.291 | -0.804 0.374% | -1.156 |-0.986

3 0.073 |-1.261 0.882 2.106% | 0.170 | -0.815 | -0.668 1.162 | -0.366 | -0.327
- 4 1144 | -0.613 | -1.459 | -1.308 {-0.349 [ -2.428*|-0.149 {-0.651 {-0.279 |-0.882
5 -0.119 |[-0.311 | 0.046 | -0.631 |-1.0%0 | -0.092 | -0.4%87 |-0.149 |~0.079 |-0.108
6 0.672 | -0.225 1.325 0.555 1,174 0.512 | =0.103 |-0.720 | 2.327* | -0.004

7 -1.190 2.035*% | =0.353 | -1.610 |-0.921 1.212 | 1.4h1 |-0.461 | -0.458 |-1.917
8 -1.255 0.230 | -1.378 | -1.613 0.902 | -1.786 | -0.917 |-1.507 |-2.262% | 0.320
9 c.h12 | -1.601 [-1.116 1.383 0.636 0.010 | =0.857 3.,111% | 0.690 0.210
10 <0.340 | <1.k76 |[-0.621 | -1.087 |-2.994* | =1.049 0.543 | ~0.050 |=-1.025 0.301
1 -2.850* | 0.887 |-0.364% | 0.179 |-0.358 | 0.867 | ©.38 |-1.38% |-1.508 | 0.115
12 0.195 [-0.648 | 2.262% | -0.120 | 0.706 | -L.145 1195 | -0.116 |-1.288 | 1.201

13 ~0.253 | -0.433 1.347 | -0.511 |-1.320 ' ~0.445 | -1.060 | -0.624% 0.579 0.029
1% -0.493 0.335 1.861 | -0.472 |-2.241% 2.232% ] ~0.361 | -0.942 |.-1.121 | -0.928

15 1.310 1.272 | -2.051*%{ 0.317 1.10%  -1.639 | -0.870 | -0.541 [-0.467 [-1.080

Critical values for the 0.05 probability level are +1.96.
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TABLE 4.30
RESULI'S OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 100 SEQUENCES

GENERATED BY THE UNIFCRM NUMBER GENERATCOR (2.1.14) - Continued

Seq. No. Ly ko l 43 J Ll J 45 ] 46 } b l 48 I Lo l 50
7 . R~ E(R)
Lag p OR
1 =1.448 | ~0.300 0.541 [ -1.487 |-1.058 0.254% |-1.219 | -1.682 | -0.717 | -0.0ko
2 -0.922 | -1.484 |-0.460 462 | -1.381 | -0.279 |-1.254 | -0.827 | =1.565 | -0.k08
3 1.436 1-0.715 |-1.233 | 0.157 | 0.216 |[-1.232 |-0.043 | 1.hok | -0.302 | -0.918
4 =1.064 | =0.221 |=-0.086 |-1.166 |-0.03% |-0.491 {-0.164% | -0.276 | -0.761 0.%39
5 -0.021 | -0.274 |-2.412 |-0.297 |-1.530 | -1.431 |-0.975 | -0.381 | -0.316 0.339
6 1.293 0.873 |-1.338 0.986 |-0.511 | -0.820 |-0.570 0.838 2.161% | 0.723
T -0.268 0.684 0.571 | =-2.263* | -0.704 0.951 | -0.640 | -1.105 | -0.371 | -1.151
8 ~0.931 | -1.614 | «2.053% |-0.L437 0.040 | -2.081* | 0.189 | «0.698 | -2.323% | 0.323
9 -0.806 0.049 | -0.434 1443 | -0.673 | -0.528 | -0.862 {-1.199 0.652 | -2.216%
us -o.2§o 1.823 | -1.368 | -0.257 |-0.456 | -1.302 |~-0.693 0.006 | -1.011 |-1.649
1 -0.282 |-1.911 | 0.%4 | 0.014 }-1.123 | 0.830 |-1.335 | 0.003 [~1.413 |-0.909
12 2.625% | =0.63% | -0.348 | 0.318& | ©0.4%1 | 0.067 | 0©.333 2.052% | =1.306 0.552
13 0.967 | -0.562 0.453 |-0.363 |-1.842 0.398 | -1.458 0.583 0.778 0.53k
1k 1.609 | -1.523 | -2.285*% |-1.115 1.251 | =1.973* | 1.027 1.39% | -1.225 |[-0.99%
15 -1.710 1466 | -1.343 0.379 {-1.829 | ~1.322 | -2.098*% |-0.856 |-0.267 |-0.501

Critical values for the 0.05 probability level are +1.96.
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TABLE 4.30
RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.%4) - Continued

e ENEEEE R E R R R
Lag p z=4 -aﬁ .

1 -0.780 | -0.885 | 0.161 |-0.5%6 | 0.599 |-1.836 [-1.216 | 0.431 | 0.58 [ -1.152
2 0.301 | -1.kbl | -0.791 |-0.331 | ~0.265 | -0.408 |-0.669 | -0.573 |-1.7%0 | o©.Th2
3 ~0.515 0.345 0.459 0.048 1.001 1.513 | -1.190 0.702 0.506 0.69%
4 -2.200% | 1.016 | -1.145 | -2.358%| 1.530 0.513 | -1.732 1.902 | -1.155 | -1.146
5 0.085 | -1.145 0.025 | l.kl2 | -0.071 | 0.190 {-1.021 | -0.162 |-1.208 | -0.619
6 0.651 | 0.07% |-0.190 |-0.689 | -0.205 1.367 | 0.146 | =0.079 | -0.149 | -1.932
7 1.194 0.131 | =1.999*% | =2.306% | -1.460 | -1.110 1.188 | -1.536 | -0.163 1.220
8 -1.500 | 1.547 | 0.761 |-0.184 | «0.974% |-0.236 |-0.863 | ~0.87L |-1.941 | -3.121*
9 -0.227 |=-1.132 | o0.262 | 0.829 | 0.630 |-0.558 [-1.578 | 0.84 | o.kh2 | 2.056*
10 -1.136 | -0.899 0.057 0.533 0.062 0.332 }-1.527 | -0.066 | -1.078 | -1.283

1 0.800 |-0.178 | 0.38 | 0.104 | -2.908*% | -0.339 | o.uk7 | -2.554* | ~0.299 | 1.297

iz ~0.94%7 | -1.207 1.170 0.082 0.154 2.201* [ -1.09C 0.399 | -e.943 | .0.1268

13 -0.293 |=-0.435 [-0.033 |-0.408 | -0.260 0.839 [-1.011 0.27k 0.521 | -1.045

1k -2.192* | 0.190 |-0.755 | ~0.650 0.075 1.788 0.236 0.367 0.568 1.187

15 ~L.71% §-1.297 |-1.137 0.509 1.207 0.05h4 0.180 1.188 0.108 | -1.81%

Critical values for the 0.05 probability level are +1.96.




64 -

TABLE 4.30

RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) - Continued

Seq. No.| 61 I 62 | 6 I 6 ! 6 66 67 68 I 69 | 70
1 g = R= B(R)
; Lag p OR
| 1 -2.833* | ~2,716% | -0.896 | -0.290 | ~1.228 0.k22 }-0.730 | -0.430 | <0.076 | -1.765
. 2 .21k 0. 772 0.179 | -l.449 | -1.270 0.008 [=l.225 | =Ll.504 1.598 | «0.376
| 3 -0.097 | -0.511 |-1.581 | -0.732 0.083 0.172 |-0.893 1.005 | -1.188 1.248
L4 ~0.351 | ~0.361 0.495 | -0.262 0.666 | ~0.056 |-0.60% | -1.382 0.262 0.509
5 0.858 0.735 |-0.151 | -0.248 }-0.952 1.574 | -0.236 | -1.690 0.248 | -0.087
6 0.169 0.999 0.246 0.827 {~0.937 |-2.317* | 0.660 | -0.256 0.514 0.863
7 -0.409 | -1.060 1.58% 0.5% | ~0.093 0.7k 0.657 0.684 | -0.713 | -1.216
’ 8 -1.302 | -1.400 |-1.433 | -1.595 |[-0.518 |-0.989 |-1.692 |-0.T711 [ -0.542 }-0.511
9 -1.220 | -0.517 |-1.749 0.071 | -0.968 0.302 0.0 0.150 | -0.598 | -0.871
10 1.456 1.189 | -0.527 1.651 | -1.123 | -1.510 1.409 |-1.353 | -0.859 0.327
11 -0.931 | -0.756 0.019 | -2,004* | ~1,489 {-1.778 |-1.78 [-1.048 | -0.688 |-0.409
12 ~0.508 | -0.857 0.002 | ~0.550 1.214 0.243 |-0.522 |[-1.260 | -0.801 2,1h3%
13 1.224 1.334% | -0.282 |-0.425 1.519 |-0.314 |-0.114 0.181 | -0.255 0.834
1k -1.023 | -1.302 0.003 | -1.631 }|-1.418 |-0.284 |-1.512 0.806 | -0.340 1.795
- 15 0.843 0.493 |-0.126 1.511 1.480 0.59% 1.567 0.150 1.197 | ~-0.396
Critical values for the 0.05 probability level are +1.96.
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TABLE 4.30
RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.%) - Contimued

Seq. Fo.f 71 | T2 ! T3 l T ] 75 AI () J 77 l T8 179 [7 8o
7 - R - E(R)
Lag p OR
1 0.309 | -0.674 0.279 | -2.2L0% | 0.013 | -1.453 1.206 | -0.84%2 | -1.177 [=1.236
2 -1.077 | =0.957 | =1.587 | -1.932 | -0.316 0.61h4 0.242 | «0.206 | -1.238 |-1.343
3 0.324 |-0.854 | -0.873 | 0.006 | 0.586 | -1.497 |-0.333 | -1.312 | 0.132 |-0.ko2
i 0.795 | -0.098 0.01% 0.704% | -1.229 0.449 | -0.07h | -0.882 | -0.086 0.592
5 -0.490 0.0k | ~1.068 | -1.127 0.247 0.384 | -1.097 0.197 | =0.939 |-0.361
6 0.378 1.023 | -1.308 | -1.115 0.096 | -0.232 |-0.662 1.737 | -0.461 | -~0.737
T ~1.690 0.436 | -0.091 | -0.404 | -2.139%| 1.617 0.923 0.488 | -0.667 |-0.283
8 -1.489 {-1.531 | -1.127 | -0.945 0.529 | -1.613 | -1.218 0.719 0.106 | -0.968
9 1.240 0.266 | -1.264 | -1.256 0.762 ~2.293% | -1.254 | -0.932 | -0.796 | -0.085
10 -0.135 1.586 0.626 | -0.892 | -0.006 | -0.133 | ~1.277 0.846 | -0.591 | -0.874
11 -3.070% | -1.652 | =0.587 | -1.327 0.702 | -0.211 0.690 0.077 | -1.188 1.504
12 0.669 |-0.%12 0.051 1.174 1.202 0.227 0.299 | ~0.360 0.479 | -1.7h2
13 -0.238 0.061 | -0.569 1.382 0.08% 0.312 | -0.081 0.935 | -1.399 0.646
14 -0.518 |[-1.081 | -2.410%{ -1.270 | ~l.112 | 0.177 | -1.453 | o.040 | 1.069 | -0.518
15 1.971% | 2.077*| 0.877 | 1.321 | -1.294% | -0.551 | -0.840 | -0.713 | -2.235%| -1.00L

Critical values for the 0.05 probsbility level are +1.96.
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TABIE 4.30

RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) - Continued

seq. No.f 81 | g E e | & [ & | o | o | & | =
- 5 B E(R)
Leg p R

1 -0.858 | -0.70% | ~0.031 | 0.168 | -1.591 | -1.236 | ~1.816 | -1.311 | -0.020 | -2.277*
2 C.12% | -2.069% 1 .0.290 | -1.220 1 _o.hob 1.1 o9p7 0.31% 116881 t —0.792 | _1.008
3 -1.439 | -0.734 | -0.876 | 0.478 0.260 1.hk2g 0.578 0.424 | -0.603 | ~0.125
b ~0.585 0.612 0.378 0.137 { =0.911 1.063 0.456 1.281 0.715 0.586
5 0.065 | -0.135 0.333% | -0.853 0.772 | -1.989% | «1.711 | =-0.670 0.399 | -1.21h4
6 1.889 | -2.075* | 0.745 1.191 0.720 0.876 | -0.329 0.341 0.800 | ~1.485
7 0.47k .26 | -1.138 | -0.970 | -0.106 0.910 | -1.01k 0.165 | -2.505* | «0.751
8 0.676 | -0.064 0.322 0.514 0.022 1.339 1.067 1.309 0.080 | -0.508
9* 0.252 | -0.891 | -2.182%| 0.450 0.257 { -1.938 0.586 | -2.027 | -1.399 | -1.078
10 1.210 0.279 | -1.833 |-1.652 | ~0.057 | ~0.905 | -0.817 | ~-0.603 | ~1.648 | -1.135
1 0.142 | ~0.443 | -1.014 | -0.098 | -0.121 0.303 1.119 | 0.074 | -1.156 | -1.205
12 -0.684 1 -0.085 0.438 0.469 1.107.> ~0.650 1.965* | -0.511 0.576 0.882
13 0.322 0.450 O.4b2 | -1.278 | -1.966% | 0.208 | -0.502 { -0.19% | -0.098 1.011
1 0.534% | -1.388 |-1.162 |-1.829 0.133 0.389 0.699 | «0.020 | ~1.010 | -1.69%
15 -0.62?1J ~0.050 | -0.727 | 1.668 | ~0.262 | -0.652 | -0.358 | -0.790 0.094 1.k02

Critical values for the 0.05 probebility level are +1.96.
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TABLE 4.30

RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) ~ Concluded

\Seq- wof oo [ e [ s [ o | o | v | o | 8 | » | wo

R - E(R)
Lag p -

1 0.069 | 0.013 | ~0.308 | 0.392 | -0.988 | -0.237 | -0.365 | -1.343 | 0.445 | -0.779

2 0.685 | -0.733 | -0.096 | -1.710 | -2.482%| -0.877 | -0.68k 0.403 | -1.889 | -1.678

3 -0.820 | -1.175 | ~0.280 0.128 | -0.324 | -0.804 | -0.672 | -1.457 1.329 | «0.137

In -1.916 | -0.501 | -2.121*| -1.115 0.876 | -0.465 | ~0.333 0.113 | -1.562 | «0.099

5 ~0.180 0.264 0.234 | -1.169 | ~1.000 0.315 | =0.447 0.938 0.107 | ~0.597

6 =0.091 | 1.h91 [ -1.215 | ~0.095 | ~1.811 | 1.060 | =0.026 | 0.117 | ~1.58% | -0.615

7 -0.584 0.095 | -2.268%| -0.166 0.378 0.502 1.297 1.259 0.212 0.037

8 -1.526 | -1.734 1.139 | -1.915 | ~0.089 | -1.698 | ~1.200 | ~1.683% 0.119 0.653

9 -0. 764 0.018 0.530 0.333 | -1.328 0.167 | ~0.664 | ~-2.613* | -0.93L4 | -0.829

10 -0.318 1.778 | ~0.513 | -0.917 0.051 1.825 0.669 | =0.434% | -2.401*| ~0.307

n -1.09 | -1.788 | 1.748 | -0.162 | -0.943 | -1.6357 | -0.088 | 0.150 | o0.740 | «1.185

iz ~1.978% { ~C.1k2 1.258 | -0.822 § ~0.307 | -0.056 1.24A | <0.208 0.615 0.044

13 -1.2b2 0.748 0.146 0.715 0.48k4 0.485 | «1.159 0.788 0.289 | -1.521

1k -~0.481 | ~0.269 | ~1l.k21 0.949 | ~1.111 | -0.463 | -0.406 0.585 | -0.897 0.870

15 1.h11 1.5 | -0.771 0.417 | -o0.0k1 2.017*| -0.978 | ~0.3k42 0.429 | -1.073

Critical values for the 0.05 probabillty level are *1.96.
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TABLE 4,31
RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 50 SEQUENCES

CENFRATED BY EQUATION (2.2.1)

Seq. Yo. 1 2 3 L 5 6 7 L, 8 9 10
5 - B = E(R)
Lag P %R
1 1454 1.359 | -1.299 0.258 | -0.07h | -0.888 0.489 0.603 | -0.373 | -1.052
2 0.711 | -0.927 | -0.091 0.585 | -0.485 | -6.938 1.626 | -06.239 | -0.811 0.k52
3 1.332 0.941 0.352 | ~0.525 0.448 | -2.552% | -1.699 ;1.5uu -0.375 0.160
I -0.34k4 -1.&5? _1.21;4_ -1.946 0.918 | -0.544% | —0.017 | -0.471 1.204 | -2.827%
5 0.484 1.0%33 1:oh%_— 0.;54 -0.413 | -0.b472 1.30% | -0.102 1.974% ! ~0.833
6 -1.529 | 1.385 | -1.495 | 0.666 -1.270 | -1.110 0.406 | -1.223 | -0.506 0.437
7 -1.M46 | -1.275 | -0.205 1.644 0.476 | -0.251 1.963% | 0.925 0.320 | -1.052
8 1.h4o 0.460 1.145 | «0.882 | -0.650 | -2.374*|{ 0.583 1.645 1.000 | -0.850
9 0.897 | -0.017 | -0.338 | «0.047 | -0.602 1.802 0.002 | =0.515 0.548 0.336
10 -0.518 | -0.347 | -0.621 | -0.979 -o.;;iir -0.206 } 0.380 | 0.009 | -0.726 | 0.122
11 0.T41 0.418 0.989 2.127% | -1.033 0.280 0.173 | ~0.095 | =0.5T78 0.721
12 0. bhi 0.081 | -1.0¢8 0.687 | -2.894%} 0.702 1.402 | <0.442 | -1.802 | -0.027
13 -0.767 | -0.106 0.427 0.065 0.849 0.768 0.263 0.090 0.16% | -0.565
1k 0.424 | <0.576 1.466 | -0.657 0.1k2 0.968 | -0.778 | -0.261 1.262 0.5%9
15 1.361 | ~0.684 | -0.088 | -0.156 0.427 | -0.bhk 0.083 | -0.718 | ~0.958 0.827

Critical values for the 0.05 probability level are #1.96.
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TABLE %.31

RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 50 SEQUENCES

GENERATED BY EQUATION (2.2.1) - Continued

Seq. No.i no|oe 17 13 b 15 ‘J 16 17 18 ! 19 ] 20
Lag P | Z= 5—:62151

1 -1.333 i 0.144 0.779 | ~c.251 | -1.682 0.386 0.168 0.950 0.854 1.551
2 0.310‘1 1.798 0.420 1.606 C.57C 0.399 | -0.%45 0.03C |-0.259 | -0.129
3 -0.840 : -1.359 | -1.812 1.278 1.660 0.527 | -0.29% 0.038 |-0.0.7 | -0.001
L -0.8% | ~1.217 0.361 | -2.518%( -0.131 |~1.k15 0.559 0.254 |-0.808 1.168
5 ~0.726 ¢ 0.254 | -0.304 0.342 | -0.631 | -0.333 0.947 | ~0.706 |-1.352 2.248*
6 -0.685 | 0.939 0.339 0.202 0.195 | -1.285 | -1.028 0.354 0.539 | -0.167
7 1.087 i =0.004% | -0.720 | ~1.k77 0.896 1.319 1.230 1.465 | -0.456 1.135
8 -1.562 | =0.317 0.388 | -1.412 | -0.241 1.890 | -0.826 2.58k= | 1.040 1.523
9 -0.717 | =0.507 | -0.964 | 1.628 | 0.020 | -1.585 | -1.517 | -0.%78 | 0.032 | -0.502
10 0.169 1.625 0.178 | -0.111 1.434 § -0.065 1.750 2.023* | -0.251 2.229%
11 0.065 | =-1.324 | -0.2%6 | -0.k21 0.557 1.141 0.63%6 O.41h [ -1.098 | -0.584
12 0.878 | -0.545 [ -0.052 0.187 2.089* | 0.555 0.521 | -0.673 | -0.585 | -0.777
13 0.235 | -0.223 0.172 -1.117‘ ~0.128 1.439 1.226 0.697 | -0.318 0.642
1k -1.107 | =0.3%25 | -1.618 0.718 | -1.051 1.271 0.088 | -0.622 0.051 | -0.170
15 -0.815 2,579%] -0.769 0. -1.439 1.332 1.062 o.k27 0.407 | -0.732

793

Critical values for the 0.05 probability level are *1.96.
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TABLE 4.31

RESULTS OF THE TEST FOR ZFERO CORRELATION FOR 15 LAGS OF 50 SEQUENCES

GENERATED BY EQUATION (2.2.1) - Contimued

Seg. No. 21 22 23 l, ok I 25 l 26 ! 27 l 28 29 30
7 - B E(®)
Lag p oR
1 0.098 0.01L | -0.8%5 0.494 0.380 | -0.247 1.274 1.%01 0.996 | -0.845
2 -1.162 | =0.532 | =0.516 | ~2.580%| -0.889 | -1.006 | -0.679 0.961 | -0.Tks | -0.692
3 1.052 | -0.608 0.746 | -0.373 | -0.680 | «0.325 | -0.241 | -0.900 | ~0.252 | -0.339
b -0.620 | -1.902 0.122 | -0.728 1.217 | -1.522 | -0.620 0.937 | =0.732 | «1.535
5 0.237 | 1.48L ] -0.548 | 0.357 | 0.328 | -0.368 | 0.711 | o0.571 | -1.282 | -0.197
6 -0.353 0.084 | -0.877 | -2.493%| 1.005 0.529 1.200 0.140 2.148% | =1.604
7 ~0.10% 0.127 | «0.860 | -1.509 | -0.46T | -0.969 1.494 0.194 | -1.305 G.451
8 1.177 | -0.668 | -0.181 | -0.235 | ~1.291 0.320 | -0.185 | -1.343 | -0.943 | -2.097
9 -0.457 0.238 | -0.507 0.293 0.450 | -0.782 | -1.651 0.029 2.311* | 1.240
10 -2.982% | 0.337 | -0.403 | -0.99% 1.738 0.772 | -0.056 0.376 0.154 | -0.318
11 0.92h 0.296 | ~0.370 0.567 | -0.986 | -0.417 1.39% | -1.695 1.659 | -0.288
17 0.824 0.768 0.351 | -0.034 0.823 0.632 0.723 | =0.323 0.927 | -0.139
13 1.553 | -l.242 | o0.150 | 1.097 | 1.099 | ©0.709 | o.¥23 | 1.362 | ©.235 | 0.659
b -0.197 | ~0.066 0.303 | -0.073 1.362 | -1.053 | -0.359 | -0.155 0.946 0.627
15 1.489 1.629 | -1.10% 1.604 | ~0.132 1.070 1.542 | -0.467 | -0.977 0.030

Critical values for the 0.05 probability level are %l.

9.
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TABLE 4.31

RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 50 SEQUENCES

GENERATED BY EQUATION (2.2.1) - Continued

I EEERERERE. ENERE:
tec » L)
1 -2.998% | «.1.379 1.337 1.260 |-0.006 0.34%0 | -0.496 | -0.856 |-0.4ok | -0.827
2 0.176 | ~0.063 | ~0.648 0.62% 0.259 | =1.166 | ~0.028 | -0.270 .311 c.127
3 0.016 |-1.281 | 0.437 |-0.505 | 0.813 |-0.721 |-0.472 |-1.385 |-1.250 | 0.076
I ~1.04T | -0.954 0.062 | -l.213 |-0.%16 1.402 | ~0.358 | -1.192 | -1.963%| 0.270
5 0.227 1.711 1.264 |-1.348 |-1.076 1.480 | -0.720 | -1.298 | -0.181 0.334
6 2.484x | 0.377 | -0.016 o.k72 1-1.112 | -0.81k | -0.297 2.250% | 0.315 1.497
7 -0.851 |-1.316 | 3.233% |-0.302 1.832 | -0.275 0.217 | 0.202 | -0.412 | -0.616
8 -1.166 | -0.99% | -0.813 |-0.646 |-0.329 0.690 | -0.894 0.301 0.110 | =0.346
9 -0.257 0.445 | -0.71% |-1.022 |-0.884 | ~0.349 0.226 0.986 0.693 0.933
10 1.05% | -1.262 | -0.345 0.123 O.714 | -1.h473 0.471 | -0.579 | ~0.470 | ~0.511
1 ~1.717 0.339 | -0.369 0.318 0.976 | -0.399 | -0.805 0.468 0.h0k 0.072
12 0.284 | -0.637 0.697 0.884 0.674 | -1.585 | -0.175 0.243 | =0.549 1.216
1% 1.226 0.71% | -1.306 |-0.188 0.665 0.517 0.099 0.730 0.013 | ~0.525
14 ~0.543 | -1.552 | 0.487 | 1.207 {-1.531 | 1.257 | 1.183 | 0.502 | 1.327 | 0©.558
15 -0.595 |-1.281 | -1.490 2.449% | 0.59 0.226 2.322% | -0.217 0.376 | -0.114
Critical values for the 0.05 probability level are *1.96.
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TABLE 4.31
RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 50 SEQUENCES

GENERATED BY EQUATION (2.2.1) - Concluded

Seq. No.| 1 J ke ] 13 " | ks | 46 f w7 | 48 ko 50
R - E(R)
Lag P Z="7%;
1 0.667 |-0.741 | 0.573 |-0.830 | -1.610 | 0.165 0.825 | -0.233 | ~1.002 | -0.578
2 -0.038 | 0.930 | 0.095 [-0.990 | 0.909 | 0.%05 | -2.330%| 0.570 |-0.124 | -0.460
3 -0.019 {-0.174% }-0.395 0.348 0.429 0.850 1.653 0.278 | -0.026 0.251 |
4 0.409 | -0.090 1.093 0.859 0.476 | «0.971 0.656 | -0.534 0.586 0.190
5 -0.210 |~0.823 0,121 | -2.258%] 0.370 |~0.231 | -0.686 1.309 | -0.613 | -0.367
6 1.251 1.305 0.113 0.098 | -0.880 1.728 1.029 0.794 | -0.126 1.290
7 -0.285 |[-0.08% | 2.059* | -0.743 | -1.053 |[-0.216 | ~1.372 | 0.772 | 0.232 | -0.658
8 -2.018% | 0.074 0.048 | -1.239 0.992 0.4%10 1.804 1.258 0.033 | -0.790
9 -0.403 0.465 0.905 { -0.792 0.364 | -0.599 0.560 | -0.857 | -1.611 1.201
10 -0.151 1.282 0.643 | ~0.359 C.244 0.017 | -0.940 1.376 | -0.698 0.660
11 =1.370 |=1.997* | -0.622 } -1.781 2.191* | -1.629 1.%08 1.972% | -0.693 | -0.256
12 0.565 |-0.572 1.72k 0.189 | 3.376% | -0.307 1.168 | -2.h16% ) 1.282 | 0.960
13 1.808 |-0.982 0.351 0.816 0.990 |=0.031 | =0.50% | ~0.799 0.263 0.361
14 0.320 0.699 |-1.258 0.037 | -0.10k | -0.862 | -~0.112 | ~0.968 0.260 1.977*
15 0.259 | 2.112*% | 0.322 | 0.558 | -0.234 | 0.253 | 1.190 | -0.095 | 0.077 | -1.001

Critical values for the 0.05 probability level are *1.96.
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TABLE k.32

RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 50 SEQUENCES

GENERATED BY EQUATION (2.2.2)

Seq. No. 1 2 3 Y 5 l 6 [ 7 8 9 10
e \ ) o , - R - E(R)
1 -2.904% | ~2,182% | .o, 760% 1 1710 | -2.483% | 2.233% | 2. 687% | -1.336 | -1.772 | -1.877
2 ~1.301 1 -0.390 | -0.147 0.342 | -0.926 {-0.0k2 | -0.0h0 |-0.573 |-0.172 0.900
3 0.216 0.614 1.065 |-0.640 | -0.153 | -0.879 0.395 | -1.223 0.177 2.158%
4 -0.511 |-0.652 1.104 2.697* | -0.773 0.501 -1.800 -0.580A -o.u§; ;;:Bgé
5 0.348 1.691 2.148% | 1.000 2.551% | -0.338 | -0.ko1L 1.193 | -1.569 | -2.419*%
6 -0.895 0.200 o.428 | -0.28% | -0.218 | -0.932 .95 | -0.92% | -1.183 | -0.71%
7 0.957 |-2.4%77*| 0.328 | -0.145 | -0.481 0.762 0.883 1.557 | -1.264 | -0.276
8 -0.951 | 0.7%6 | 0.180 | 0.948 | -0.kok | -0.083% | 0.227 | -0.901 | 0.372 | -1.619
9 -0.036 | -0.671L 0.808 | -0.368 0.702 | -0.708 | -0.121 | -0.126 | -0.0k2 C.064
10 -1.287 1.011 | -0.502 | -0.361 0.474 | -0.194 | -2.964*] 0.938 | -0.929 | -2.021*
11 0.665 |-0.651 | -0.038 0.639 1.130 | -1.016 0.720 | ~0.200 0.397 0.577
12 -0.640 0.139 | -0.818 1.133 | -0-938 | -0.63k 0.585 | -1.069 | -1.049 | -0.708
13 1.358 1.103 0.462 1.09% 0.670 | -0.573 0.175 | -1.488 1.126 | -1.383
14 -0.558 0.310 | -1.098 | -0.5%6 | -0.387 | -0.%20 0.719 0.115 2.463% | ~0.432
15 -0.150 |-0.310 | -1.688 0.319 0.671 0.795 0.496 2.061% | ~0.0k2 1.150
Critical values for the 0.05 probability level are *1.96.
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TABLE k.32
RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 50 SEQUENCES

i GENERATED BY EQUATION (2.2.2) - Continued

q. No. 11 [ 12 [ 13 [, 14 J 15 rﬁ 16 l. 17 i 18 I 19 I 20
7 = R - E(R)
Lag p Tor
1 ~2.246% | L. O79% | -1.968% | -4.506% | -L.52T* | -2.323% | -4,169% | -3,156* | -3,105* | -2.812%
} o 0.095 1-0.5%5 | -0.933 | -0.702 | -0.326 | -0.470 | 0.013 }-0.087 | ©.012 | ©.018
‘ T
{ 3 -0.066 |~1.207 | -1.01% | -0.624 | -0.236 1.152 0.535 1.808 1.039 0.130
4 -0.055 1.64 | -0.424 | -0.336 | -0.953 1.583 0.648 |-1.302 | -0.959 0.302
5 0.962 |-0.589 0.k443 1.b52 0.195 1.612 0.099 {-0.013 0.00% | -0.681
6 0.189 | ~0.706 | -1.004 1.461 | -0.348 | -0.618 1.b%52 0.221 | -0787 -0.962
_" 7 -0.258 0.398 | -0.902 | -0.369 1.488 0.290 1.226 | -0.931 | -0.052 0.964
.. 8 -1.960%* | -0.792 | -0.325 | -0.300 | -1.875 0.098 | -0.272 1.583 | -0.443 | -0.125
9 -0.911 1.626 | -1.50% | -0.602 0.38k 0.047 0.968 | -1.173 1.370 | -1.062
10 -0.858 | -1.239 | 1.524 | -0.6L1 | -0.541 | -0.167 |-0.365 |-2.347*%| -0.693 |-0.581
11 -1.121 | -1.095 | -0.265 | -1.098 1.723 | -1.011 | -0.994 1.46 | -0.050 |-0.783
12 -0.056 1.480 [ -0.458 | -0.267 | -0.053 | 0.026 0.052 | ~0.493 | -0.11% | -0.65k4
\
! 13 0.864 | -0.540 | -0.135 1.523 | -0.822 | -0.175 |-0.049 |-0.092 0.161 |-1.552
14 -1.654% | -1.108 | -0.207 | -2.036*| 0.117 | -0.476 |-0.620 1.657 3.305% | -0.055
.o | 15 -1.421 | -0.354 1.05L 0.73%9 0.168 | -0.984 1.634 0.155 0.118 0.648

Critical values for the 0.05 probability level are *1.96.
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TABLE k.32
RESULTS OF THE TEST FOR CORRELATION FOR 15 LAGS OF 50 SEQUENCES

GENERATED BY EQUATION (2.2.2) - Continued

Seq. No. 21 22 23 2l 25 26 27 28 29 30
R - E(R)
lag p Z = R
1 ~L.431 P L3.172% 1 20,562 1 -3.001% | -3.640% | -3.344% | _0.850% | ~2.376% | -3.361% | -3, 577*
2 -1.635 §-l.24L §-1.635 C.006 [ -0.045 | -1.758 0.064 0.177 | -0.713 | -0.415
3 0.480 0.170 0.376 |-0.621 1.722 0.155 | -0.869 |-0.241 0.475 0.483
i -0.519 0.432 | -0.231 [-0.792 |-0.94% |-0.305 | -0.566 0.1%1 0.328 | -1.14k
5 0.83 |-0.038 | -1.099 1.363 1.435 | -1.095 0.263 0.902 1.916 0.282
6 0.013 1.243 | -2.457% | 0.755 | 0.712 |-1.239 |-0.%62 | 0.598 | 0.486 | 0.103
i 1.694 0.175 1.70% L.32h | -2.663% | -0.865 | -0.330 | -0.806 0.603 | -2.570%
8 -0.276 0.203 1.511 |-1.787 0.918 | -0.317 |-0.229 | -1.005 | -0.318 1.298
9 0.350 1.293 | -0.301L |-0.24k 0.091 |-1.652 |-1.993*| 0.189 0.900 0.540
10 -0.203 0.059 | -0.4%29 1-0.026 0.743 1.283 1.183 | -1.689 0.487 0.676
11 0.296 |-1.076 0.315 1.566 | -1.129 2,104% | ~0.954% | -0.130 0.622 0.473
12 1.070 |-0.102 | -0.283 | 0.720 | 1.268 |-0.138 | 1.091 | -0.416 | -0.787 | 0.772
13 -0.298 1.319 | -0.378 |-0.480 | ~0.931 1.392 0.301 0.207 | -0.788 | -0.347
14 -0.307 |-1.821 | -1.408 2.185% | 0.486 | -2.067* | 0.720 | -2.198%| 0.ko06 | -1.397
15 0.886 1.326 | -0.801 0.051 1.37h 0.854 0.190 | -0.436 { -0.023 | -0.04T
Critical values for the 0.05 probability level are *1.9%6.
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{ TABLE 4,32
i RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 50 SEQUENCES

GENERATED BY EQUATION (2.2.2) - Continued

Seq. Mo 31 ! 32 J 33 ! 3k AJ 35 4] 36 1 37 ! 38 | 39 ] 40
Lag p z = R - BR

1 1.781 |-3.0%2% [ 1.415 |-1.688 |-4.399% | -3.369* | -2.980% | -2.883* | -2.042* | -3.552%

2 0,725 | -0.346 1.127 0.848 0.200 | -1.242 0.566 | -1.689 0.934 | -0.305

3 0.088 |-1.168 1.522 0.422 ] -0.383% 0.063 | -1.017 0.706 0.570 0.506

4 0.563 0.205 |-0.062 | -0.308 | -1.069 0.105 |-0.010 |-0.255 | ~0.233% | -1.052

5 -0.405 1 -0.748 | -0.780 |- 1.544 | -0.550 0.964 | -0.378 0.028 | -1.162 0.695

6 -1.255 |-1.500 |-0.692 [ 0.932 | 1l.k70 | 0.120 | 1.070 [-0.752 | -0.478 | 1.160

.7 T -1.255 1.377 | -1.44k | -1.005 | -0.265 0.490 0.827 0.552 | -0.379 0.415
- 8 -0.685 | -0.704 1.537 0.03%6 0.275 2.818% | -0.452 2.721% | 0.087 | -1.153
) 9 0.24k 0.068 0.837 1.123 0.818 | -1.208 0.221 | -1.580 1.304 0.255
10 -0.857 |[-0.937 | -0.276 |-1.099 | 1.231 | -1.038 | 0.659 |-1.35% | 0.110 | 0.265
11 1.521 | 2.154%f -0.575 | -0.548 | -0.708 | -0.029 | 0.679 |-1.126 | 0.135 | 2.213*

12 -0.273 1.845 0.860 1.440 | -1.083 1.631 1.450 0.952 | -0.161 0.208

13 -1.0k46 0.575 | -0.351 0.517 1.216 0.470 0.179 |-1.453 | -0.112 | -0.T719

1k 0.615 | -0.259 | -0.503 | 0.067 | 0.%97 | 0.288 | -0.193 1.249 | -0.015 | 0.937

: 15 -0.297 | 0.022 | -0.5% | -0.531 | -0.157 | -0.034% | 0.133 | 0.845 | -0.952 | 1.619

Critical values for the 0.05 probability level are *1.96.
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TABLE 4.32

RESULTS OF THE TEST FOR ZERO CORRELATION FOR 15 LAGS OF 50 SEQUENCES

GENERATED BY EQUATION (2.2,2) - Concluded

Seq. No. 41 Lo 43 Ll L5 L6 k7 48 Lo 50
Lag 7 = E_Zagiﬁl
1 ~2.012% | ~h.s13% | o 718% | -3.110% | -2.300% [-2.608% | -3.555% | -3.599% | -3.804* | .2.557%
2 0.665 |-2.182% | -0.505 | 0.613 | 0.668 |[-1.466 |{-1.072 |-1.286 |-2.745% | -0.270
3 ~0. 470 0.202 0.161 1.275 0.134 }-1.853 |-0.220 2.94g% | 3.117% | o0.bkes
L -0.551 0.511 | -o0.k17 0.548 1.30% 0.333 0.281 |[-0.006 |-1.207 |-0.553
5 -0.014 |-0.885 | -0.018 |-1.018 0.492 0.477 |-0.7h2 |-1.412 0.260 0.363
6 0.163 0.649 | 0.1% 0.77L | -0.622 1.597 | 1.130 | o0.061 |[-0.755 |-0.0kO
ol L.741l ]-0.119 | -3.085% | -1.230 0.058 |-1.167 |-0.678 0.722 0.736 1.420
8 -0.099 |-0.341 0.260 0.922 | -0.291 0.655 0.00L |-0.743 | -0.341 | -0.50%
9 -0.601 1.365 | -0.638 0.352 0.368 1.626 1.069 1.483 0.578 | ~-0.357
10 0.048 0.0%0 | -0.338 |-0.736 | -1.103 |-0.863 |-0.051 | 0.334 | -0.0k0 | -1.M11
11 -0.639 |[-1.641 | -0.4k0 1.079 | -1.215 1.394% | -0.962 0.195 | -0.765 0.050
12 0.496 |-0.499 | -0.050 0.259 | -0.121 | -2.528% | ~0.hk2 | -1.122 | -1.345 1.232
13 -0.678 1.36% 0.191 1.534 | -0.762 | -0.504 1.816 0.586 | -0.300 0.148
1h 0.873 |-0.349 0.059 1.108 | -0.759 0.618 | -1.285 1.758 1.131 0.895
15 0.380 0.773 1.779 0.83%9 0.086 0.200 0.332 | -0.691 | -0.627 0.588
Critical values for the 0.05 probability level are *1.96.
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V. TESTS FOR NORMALITY AND UNIFORMITY

Since for each sequence of numbers generated by the methods in
Chapter II a distribution function is specified, it would be reasonable
to expect each sequence of numbers to possess all the essential proper=-
ties of the specified distribution function. One's interest in this
chapter 1s somewhat different than in the previous one. Here one is
concerned mainly on whether or not each sequence of numbers truly comes
from the specified distribution. A sequence of numbers may be random;:

however, if it does not follow & prescribed distribution, it could be

useless,

The tests that follow should indicate with some degree of confidence
whether each sequence follows the uniform distribution on the internal
(0,1) or the normal distribution with zero mean and unit variance. For
this purpose, 4 tests have been performed on each of the 200 sequences
generated by the methods of Chapter II for this study. Two of the tests
are Karl Pearson's X° and the Kolmogorov-Smirnov D-test statistic.

Both of these are known as goodness-of-fit tests. The remaining two are
tests on the sequence means and variances, respectively.

5.1 Chi-Square Goodness-of-Fit Test

Let x3, xp, . . ., Xy be N independent observations of some
random variable with an unknown distribution function f(X). Consider

testing the null hypothesis

Hy: £(X) = £,(X) (5.1.1)
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where fO(X) is some specified distribution function. In general, the
problem of testing such a hypothesis is known as "goodness-of-fit'"
problem. If fO(X) is completely specified with regard to its
parameters, (5.1.1) is referred to as a simple hypothesis, This case

will be assumed here.

Let x1, %5, + .« o+, Xy be the N observations of a sequence of
numbers generated by the methods in Chapter II. Consider the division of
these N observations into k mutually exclusive classes each class

containing N; observations. Let the probability of an observation

falling in the ith class be

=5 1=1,2, ...,k (5.1.2)

kK

where Zz Pi = 1. Since it is assumed that fp(X) is completely
i=1

specified, the corresponding class probabilities according to the k

mutually exclusive classes may be determined and denoted by pj, where,
k

necessarily, }: Pio = 1. Consider the null hypothesis (5.1.1) to be

i=1

started as follows:
Ho: Pi = Pio

Hy: Py # Pig (5.1.3)



- 80 -

Then, when HO is true and from the k mutually exclusive classes, the

test statistic

k
= (N - Npyo)?
= ) . .)+
T /. No1o (5.1.%)
i=1

is distributed approximately as a chi-square with k = 1 degrees of
freedom. The null hypothesis is rejected whenever the computed =
pper tail of the chi-gsquare distrim
of freedom and some given level of significance. This is the well-known
Karl Pearson's chi-square test of goodness-of~fit (16).

It has been shown by many (17) that this test statistic is
asymptotically equivalent to the maximum likelihood ratio test. Much
discussion has centered around the optimum choice of k for a given
number of N observations. Generally, no power of this test statistic

has yet been determined. Mann and Wald (18) have shown that if

5
K = 4‘/§K£Lé%&23. (5.1.5)
(]

where N 1s the number of observations in a given sequence and ¢ 1is

l /’00 _;tz
J e 2 7§ 1is equal to the probability of

2% ¢

determined so that

the critical region under the null hypothesis (5.1.3), then the power of

the test statistic is approximately 0.50. For a large N, (5.1.5) would
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produce s fairly large k which could be impractical. However,
Williams (19) and Kendall and Stuart (17) report that k can be halved
from (5.1.5) without serious loss of power at the 0.50 point. This
suggestion is considered in this study. It is worth noting that (5.1.5)
would be an effective measure of k vwhenever N 1is substantially large.

5.1.1 Pearson's Test for Normality

To apply Pearson's chl-square test to each sequence generated by
equations (2.2.1) and (2.2.2), one must classify the N = 10,000 observa=-
tions of each sequence into some k classes. For N = 10,000 and an
a equal to 0.05 for the probability of Type I error, one determines a

k by (5.1.5) to be approximately equal to 140. Recall that

]

1/2
(=2 1n Ui) sin 2xU,

il

(= 1n v;)Y2cos 2nu,

1]

X

were a pair of independent random variables having the same normal
distribution with mean zero and unit variance. Consider the following
class arrangement of a given sequence generated by one of the above

equations:

(=0, =3.0), (-3.0, =2.9), (-2.9, ~2.8) . . . (2.9, 3.0), (3.0, )

This arrangement would produce k = 62 classes of 0.10 width. This is
fairly close to one-half the value of k obtained by (5.1.5). For this

classification, the observed probabilities, p;. may be determined by
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dividing the number observed in each class, Nj, by N for
i=121,2, . . ., 62. The corresponding theoretical probabilities, pi,,
may be obtained from any table of the standard normal distribution.
Thus, to test the null hypothesis

Hpo: Pi = Pio

H

i Py # Py, (5.1.2)

compute the statistic

62 , 2
7 (Ny ~ Npio)
T = }; (5.1.3)
Npio
i=1

and compare it with the upper tail of the chi-square distribution with
k =1 =61 degrees of freedom and a probability of 0.05 for Type I
error. The null hypothesis is rejected if the computed T exceeds the
critical region. Rejection implies that the distribution of the given
sequence of N observations 1s something other than the normal with
zero mean and unit variance.

The results of this test on the 100 sequences generated by equa=~
tions (2.2.1) and (2.2.2) appear systematically in tables (5.10) and
(5.11). Out of the possible 100 sequences, 4 were rejected. Hence, the
results indicate that both equations (2.2.1) and (2.2.2) generate
sequences that appear to be normally distributed with zero mean and unit

variance.
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5.1.2 Pearson's Test for Uniformity

To test that a sequence of numbers generated by equation (2.1.4) is
uniformly distributed on the unit interval, one uses a similar approach
as in the case with normality. Consider the classification of the

N = 10,000 observations for each sequence to be the following:

(0.00, 0.01), (0.01, 0.02), (0.02, 0.03) . . . (0.98, 0.99), (0.99, 1.00)

This results into k = 100 classes of 0.0l width. It is apparent that

-
“

O

mmber of

| =
¥
v

observations falling in the ith class. Clearly, the corresponding
theoretical class probabilities, pj,, equal to 0.0l for all
i=1,2, .. ., 100. Hence to test the null hypothesis of uniformity,

compute the statistic

0.01N (5.1.4)

100 , =)
(Ny = 0.01N)™
i=1
and compare the computed 1 with the upper taill of the chi-square
distribution with 99 degrees of freedom and o = 0.05. Rejection implies
that the distribution of the given sequence is not the uniform on the
interval (0,1).
Table (5.12) contains the results of this test statistic for the

100 sequences generated by equation (2.1.%). There was a total of
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three sequences rejected. Therefore, the apparent conclusion is that
equation (2.1.4) seems to generate sequences uniformly distributed on the

unit interval.

5.2 Kolmogorov-Smirnov Criterion

Consider the cumulative distribution function FO(X) of some
specified density function f(X). Clearly, for any specified value of
the random variable X, the value of FO(X) is the proportion of

individuals in the population having values less than or equal to the

is quite reasonable to expect the cumulative step-function of the sequence
of N observations to be fairly close to the specified cumulative
distribution function FO(X). If this is not the case, one may reasonably
assume that £(X) is not the distribution function of the sequence.

Let Fp(X) be the cumulative distribution function of the specified
density function f(X), and Fy(X) the observed cumulative step-function
of the sequence of N observations. That is, Fy(X) = k/N where k 1is
the number of observations less than or equal to a specified X. Then

the distribution of
D = max|FR(X) - Fo(X) G.2.1)

is known and is independent of Fu(X) if Fp(X) is continuous. The
limiting distribution of this test statistic D has been derived by

Kolmogorov (13) and by Smirnov (14); thus, it is known as the Kolmogorov-
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given sequence of N observations has the specified cumulative distribu=
tion function Fp(X), record in a table the observed and specified
cumulative distribution functions and calculate the maximum deviation
between them. Reject the null hypothesis whenever the maximum deviation
exceeds the critical value of the D-statistic with some a, the proba-
bility of Type I error.

This test becomes exact whenever the observations are not grouped
into various classes. However, for most applications this is prohibitive.
Although grou servations into class inlervals btends to lower the
and will cause little change in the appropriate significance levels. In
addition, some caution must be exercised not to choose a very small
number of class intervals.

It was noted in the preceding section that in general no power of

Pearson's X2

goodness~of -fit test exists. However, a lower bound of
the power of the D-statistic has been derived by Massey (11). The
results of his work are presented below. Let Fl(X) be an alternative
form of the specified cumulative distribution function Fg(X). Let A
be the maximum absolute difference between Fy(X) and Fp(X). Then for
N large, it has been shown (15) that the power of the D-statistic is

never less than

1 -

= /2[A‘,ﬁﬂ)m(l\w]e"’°2/2 at
Vor Vo[AVN -Du(n)] (5.2.2)
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where N is the number of observations and Iy (N) is the critical value
of the D-statistic with o being the probability of Type I error. Based
on the work of Massey (11), (15), filgure 5.2 shows this lower bound for
the 5 and 1 percent levels of significance. Hence, the figure indicates
that the D-statistic of Fp(X) has at least 0.50 power against the
alternative F1(X). As an example, suppose N = 10,000, and the maximum
absolute difference between Fy(X) and Fn(X) is 0.02; then,

Z&Vﬁf = 2.00. If one tests the specified distribution FO(X) at the

D percent level of significance, a lower bound of the power ot this test

3
“

4]
L)
2
i3
&7
ct+
o]
[e2
0]
o
o
\O
H

efore, the power of this test is at least 0.89
against the alternative F;(X). In other words, if Fj(X) 1is correct,
one has at least 89 percent chance of detecting that Fo(X) 1is the
incorrect cumulative distribution function of the given sequence of

N = 10,000 observations.

The author has considered both existing tests of goodness—of-fit;
namely, Pearson's X2 and the Kolmogorov-Smirnov D-statistic. In
general, the power of Pearson's X2 is not known, where a lower bound
to the power of the D-statistic may be read from figure 5.2 for any
alternative. Judging on this comparison slone, it is reasonable to
believe that the D-statistic provides the better test for goodness-of -
fit as long as the specified distribution function is continuous.

5.2.1 Kolmogorov-Smirnov D=Statistic for Normality

To test any sequence of numbers generated by equations (2.2.1) or

(2.2.2) for normality using the D-statistic, classify the observations
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a = 0.01

0.5 1.0 1.5 2.0 2.5 3.0
N
FIGURE 5.2

Lower bounds for the power of the D test for o = 0.0l and a = 0.0
(Reproduced from (11))
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into the 62 class intervals of 0.10 width as indicated in 5.1.1. Obtain
the cumulative distribution function FO(X) for the specified normal
density and the above class intervals from any appropriate table of the
standard cumulative normal distribution function. Determine the observed
cumulative step-function FN(X) by dividing the number of observations
in each class interval by N = 10,000. Compute the maximum absolute

difference

Ul
o
\v]

— I_.. - _I.._\l -
D = max !b'N()&) - F(X)| (

and compare it with the critical value D,(N), where o = 0.05 and

1.36 _ _ 1.36

\  VIo,000

null hypothesis of normality if the computed D exceeds Dy 05(10,000).

Dy 05(10,000) is given by (11) = 0.0136. Reject the

The D~-statistic has been performed on each of the 50 sequences generated
by equation (2.2.1) and the 50 sequences generated by equation (2.2.2).
The results appear in tables (5.20) and (5.21), respectively. These
indicate that both equations (2.2.1) and (2.2.2) seem to be generating
sequences having the specified normal distribution. Although no rejec-
tions were noted for any of the 100 sequences, this should not be an
alarming result because from the discussion of the preceding section a
lower bound of the power of the D-statistic can be easily determined.
For example, even if the maximum absolute difference between the
specified Fy(X) and some alternative F,(X) 1is as small as 0.0175,
one has at least 78 percent chance of detecting the incorrectness of

(Vv o+ +1n~
O\J\-I A wiila

N
)
H
+

"t
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5.2.2  Kolmogorov-Smirnov D=Statistic for Uniformity

A very similar procedure may be followed to test the null hypothesis
that a sequence of numbers generated by (2.1.4) is uniformly distributed
on the interval (0,1) by considering the 100 class intervals of 0.0l
width as indicated in 5.1.2, By determining the specified cumulative
distribution function Fy(X), and the observed cumulative step-function

Fy(X) based on the 100 class intervals, the statistic

D = ma.xiFN(:X) - Fo(x)i 5.2.3)
may be computed and compared with Do.o5(lO,OOO) = 0.0135 as before.
Rejection implies that the distribution of the given sequence is not the
uniform on the unit interval. The results of this test on the
100 sequences generated by equation (2.1.4%) may be found in table (5.22).
The results indicate the following:

A total of four rejections were noted; this, of course, is within
the framework of the statistical test. erefore, it appears that
equation (2.1.4) does generate sequences that are uniformly distributed

on the interval (0,1).

5.3 Tests on Sequence Means and Variances

Since each sequence of numbers is assumed to be either uniformly
or normally distributed - depending on whichever is the case = with
some specified mean and variance, it is reasonable to expect each mean
and variance of a given sequence to estimate or be approximately the

same as the mean and variance of the specified distribution function.
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To detect the degree of agreement, the following common statistical
tests have been performed on each sequence.

5.3.1 Tests on Sequence Means
N

Let ¥ == E: X5 be the mean of a given sequence X710 Xos o o o,
1=1
Xy. Then, for any given distribution function with mean p and variance
02, X is normally distributed with mean p and variance 02/N, and the

statistic

_E-p

" ol

(5.3.1)

is the value of a random variable whose distribution function approaches
that of the standard normal as N — o». This, of course, is the central
limit theorem on which one bases a test to determine whether or not the
mean of some sequence of numbers 1s truly the mean of the specified
distribution function of that sequence.

Hence, to test the null hypothesis Hpy: p = pg against Hy: u # ug,

where pn 1is equal to the mean p of the specified distribution, compute

the statistic

Z =";/-\/-"N— (5.3.2)

and compare it to both the left and the right tails of the standard
normal with a chosen probability of 0.05 for Type I error. If Z

exceeds these limits, reject the null hypothesis and conclude that the
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mean of the sequence being tested i1s something other than the mean of
the specified distribution.
Results of this test for the 200 sequences may be found in
tables (5.30), (5.31), and (5.32). These results indicate the following:
(a) For the 100 sequences generated by equations (2.2.1) and
(2.2.2), no rejections were noted. As a matter of fact, the agreement
between sequence means and the theoretical mean of zero is excellent.
(b) For the 100 sequences genersted by equation (2.1.4), a total
of seven rejections were noted. However, on the average the agreement
with the theoretical mean of 0.50 was very good.

5.3.2 Tests on Sequence Variances

Throughout this study, each sequence of numbers is assumed to have
one of two distributions, the uniform or the normal. A test on the
varlance of a given sequence assumed to be normally distributed is quite

straightforward. Let the unbiased estimator of o

(&)

N /_; 1
< o2 \im |/
-
Y
@ = - - (5.3.3)
N - L

be the varlance of a given sequence of numbers assumed to be normally

distributed. To test the null hypothesis Hg: 02 = c% against
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Hp : o £ qg where og 15 equal to the variance o of the specified

normal distribution, compute the statilstic

X2 =.§N_;2}_LS_2 (5.3.)4,)
0
where X2 1is & value of a random variable having the chl-square

distribution with N - 1 degrees of freedom. If X° < x?L or

/2
X2 > Xg/e with N -1 degrees of freedom and o = 0.05, reject the
null hypothesis and conclude that &° 1s not in agreement with 02, the
variance of the specified distribution function.

No such exact test exists if the distribution of a sequence is not
assumed to be the normal. Nevertheless, an approximate test on the
sequence standard deviation s 1s frequently used and offers a fairly
good approximation if the sample size is large. It is common knowledge
that the sample variance s° 1is an unbiased estimator of 02; but the
sample standard deviation s is not an unbiased estimator of o.
However, for large samples the bilas is small, and it is common practice
to estimate o with s.

As é result, let X7, X, . . ., Xy be a generated sequence of
numbers with some specified distribution function. Define 2 as in
(5.3.3). Then, for a large sequence size and under fairly general
conditions, the distribution of s = Jgﬁ- can be approximated (10)

closely with a normal having the mean ¢ and a standard deviation

o/fEN, where o2 is the variance of the specified distribution function.
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- Hence, to test the mull hypothesis Hp: ¢ = oy against Ha: o # o

where oy = V;Z; compute the statistic

_ 8 = dg

Z—;;ﬁ‘ (5.3.5)
which is a value of & random variable having approximately the standard
normal distribution. The critical values of Z may be determined as
before.

This test has been performed on the 100 sequences generated by
equation (2.1.4), The results for the entire 200 seéuences may be
found in tables (5.33), (5.34), and {5.35). The apparent conclusions
are the following:

(a) PFor the 100 sequences generated by equations (2.2.1) and
(2.2.2), there were six and five rejections, respectively. Although
this number is slightly higher than expected, the agreement to the
theoretical variance of unity 1s generally very good.

(b) For the 100 sequences generated by equation (2.1.%), no
rejections were noted. This could be due to the fact that the test used
was only an approximation. Nevertheless, the agreement to the theoretical
variance of 0.083333 is excellent.

§4A' Numerical Results

Results of the various statistical tests described in this chapter
appear systematically in the tables that follow. As before, all calcu-

lations were made with the use of the IBM 7094 computer; some of the
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‘ results have been rounded for presentation. The critical values for the
appropriate random variables are indicated in each table. As before,

rejection is indicated by an asterisk.
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TABLE 5.10
RESULTS OF PEARSON'S X° GOODNESS-OF-FIT TEST FOR NORMALITY OF

50 SEQUENCES GENERATED BY RQUATION (2.2.1)

Sequence No.

1 2 3 in 5 6 7 8 9 10
62 (x - )2
.= Z i Npipm 49.66|36.37|45.69] 67.35| bk .29| 38.77|62.72 83 .37% | 80.60* |67 .41
(o]
1=1
Sequence No.
11 12 13 1k 15 16 17 18 19 20
62 5
(Ni - NPio)
T = z — 4o,76(65.31169.02|79.81{45.14]51.91|51.81 [58.16 {69.11 {62.15
Dy,
1= °
Sequence No.
: 21 22 23 2k 25 26 27 28 29 30
' 2
(N, - Npg,)
T = Z -(-1—21—"— 59.49142.30(58.08(63.17|57.07|59.68|44.80[61.20 | 68.03 {T70.21
Npio
i=1
Sequence No.
31 {32 |33 |34 |35 |36 |37 38 39 | ko
62 o
Ty -Ny ) ) ] ) e
= Z -iﬁg—ﬂ’— 69.85|48.81146.59[59.57150.19{ 62.75[51.93 |68.86 |81.59%{55.25
i1 io
Sequence No.
W1 | L2 43 | 4k hs ke | bkt 48 b9 | 50
62 2
N; - N
r= LLN—M 69.86[ 4k .98|57.70(69.02{69.69] 43 .43 70.23 |72.24 |48.85 |48.21
Pio
i=1

The critical value of X2 with 61 degrees of freedom and the 0.05 probability
level is 80.2,
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TABLE 5.11

50 SPQUENCES GENERATED BY RQUATION (2.2.2)

Sequence No.

GOODNESS~OF-FIT TEST FOR NORMALITY OF

1 2 3 h 5 6 7 8 9 10
62 5
(Ni - Np;,)
T = }; ~ %o 56.564] bl .263( 59.,186[52.846 {57.967 |69.338]|32.343 {51.694 [59.603 [72.993
i1 10
Seguence No.
11 12 13 1h 15 16 17 18 19 20
G (N - Npyo)°
r = —_Ejﬁ;—lﬁL— 46.837|52.675| 68.084|65.905 | 64,316 169.008|5%.223 j49.470 |53 .087 |66.270
121 io
Sequence No.
21 22 23 24 25 26 27 28 29 30
& (wy - Moy,)
T = ;ﬁ 5%.576] 78 46k| 73.384]87,591%]51.955 {64 .107]59.948 |73.764 [16.105 |50.364
— Npio
i=1
Sequence No.
31 32 33 3k 35 36 37 38 39 ko
62 (x Nou )2
.= }: i ;P Pio’ lig.om2l 65304 59.543]59.506 |50.193 55.302]62.191 [52.041 [60.632 |63 .082
1= 10
Sequence No.
iy 4o 43 Ll 45 46 g 48 Ts) 50
62 2
I (Ni - NPiO) - - <) 7 7
T = }J -———;E;—————-51.042 69.498) bt ,166|52.07( [50.418 (60.91458.833 {63.999 |64.023 {51,071
io
i=1

is

The critical value of X?

80.2.

with 61 degrees of freedom and the 0.05

probability level
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TABLE

5.12

RESULTS OF PEARSON'S X2 GOODNESS~OF-FIT TEST FOR UNIFORMITY OF 100 SEQUENCES

GENERATED BY THE UNLFORM NUMBER GENERATOR (2.1.4)

Sequence No.
1 2 3 b 5 6 7 8 9 10
100 (¥, - 0.01N)°
.= > _i_OTJ..N___ 96.22| 90.26| 93.80] 68.00 81.06)130.48%|105.98| 9k.90 | 75.72 |101.0%
i=1 ’
Seguence No.
11 12 13 1h 15 16 17 18 19 20
(- 0.01m)2
.= E -—1—1_1-—— 88.00| 76.84|121.60| 98.20/100.18| 80.90 | 86.84| 88.54 |107.92 | 91.08
, 0.01N
i=1
Sequence No.
21 22 23 2k 25 26 27 28 29 30
10 (N4 - 0.01N)2
T = Z——i_;_bi—m— 88.80| 71.12| 76.26|106.20] 93.80{11%4.84 | 99.64| 96.88 | TT7.14 | 82.70
i1 ’
Sequence No.
31 32 33 3k 35 36 37 38 39 4o
100 (y, - 0.01m)° o o . o
T ) 0.0LN 83.50| 92.52[109.68[104 .44 81.60] 81.46 [ 92.98( 89.70 [1k2.56%| 92.18
i=1
Sequence No.
41 4o 43 L 45 46 b7 48 kg 50
100 o
< (vy - 0.01N)
T= ) ——Wlooﬁu 110.00| 72.98| 95.24 75.10{ 72.40 | 80.58|107.70 {127.7%*| 97.78
The critical value of X2 with 99 degroes of fre probability level

is 123.2.

[ala]
TJ7 Gigiiin

Lo -4

{

'
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RESULTS OF PEARSON'S X2 GOODNESS-OF-FIT TEST FOR UNIFORMITY OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4%) -~ Concluded

Sequence No.

oL _Lfre A ... _o
due Cliviiadl voauc vl "~

is 123.2.

51 52 53 Sk 55 56 57 58 59 60
100 2
T (Ny - 0.01W
T = > (—-i-o—om—) 80.20| 87.32| ok.22| 9k.96| 81.02[105.14 | 83.90| 85.62 | 91.00 | 78.50
i=1 )
Segqucnec No.
€1 62 63 el 65 66 67 68 69 T0
R, - 0.0mm?2
T = Z 5 oIN gk .90 96.72( 84.98{108.62( 88.94| 89.94% | 98.10( 85.76 | 78.28 [107.3%
i=1
Sequence No.
- 71 72 3 T4 5 76 T 78 9 80
i 100 2
T (¥ - 0.0LN
~ T = Z (g oiE ) 72.801 95.84]102.04] 94.68] 85.70| 93.34 | 75.10] 78.24 | 80.80- [113.k2
. i=1
Sequence No.
81 82 83 8L 85 86 87 88 89 20
100 (. - 0.01W)2
T = > —l_o'ﬁr_— 85.66| 89.50] 98.32} 81.82] 8L.k2{10k.52 | 89.58| 96.82 (111.98 | 92.88
i=1 )
Sequence No.
91 92 93 ol 95 96 97 98 99 100
100 2
N, =~ 0.01N
- T o= EHWN_) 80.501 96.14| 90.38} 88.50| 86.98]101.60 | 90.62{ 88.68 1103.82 |72.68
121
- 2

om and the 0.05 nrobability level
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TABLE 5.20
RESULTS OF THE KOIMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST FOR NORMALITY OF

50 SIQUENCES GENERATED BY HQUATION (2.2.1)

Sequence No.

Dy = maxlFN(X) - Fo(X)| [|0.0053 [0.0035 |0.0056 |0.0068 |0.0051 0.0056 [0.0069 [0.0082 |0.0083 |0, 0054

=
.
o]
Fo
(=
W
=

15 16 17 18 19 20

Dy = max Fi(X) = Fo(x)]]j0.005310.0091 0.0047 |0.0076|0.0070 [0.0036 |0.0108 |0.0037 |0.0102 |0.0047

Aeciienns N
vedguence NO.

21 22 23 2 25 26 27 28 29 30

Dy = max|{Fp(X) - Fo(X)||l0.0103 0.0049{0.005010.0057 {0.0082 [0.0059 |0.0056 [0.0065 |0.0057 [0.0056

Seguence No.

31 32 33 3k 35 36 37 38 39 Lo

Dy = max|Fu(X) - Fy(X)||l0.0054 |0.0055{0.0060 [0.0090 0.0080 [0.0049 }0.0066 {0.0067 |0.0076 |0.0070

Sequence No.

b1 Lo 43 Ly 45 46 b7 48 kg 50

Dy = max|Fy(X) - Fo(X)] |{0.0097 }0.0056 [0.0063 |0.0077 {0.0101 [0.0061 [0.0061 [0.0063 [0.0086 |0.0057

The critical value of Dy for N = 10,000 and the 0.05 probability level is 0.0136.
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TABLE 5.21
RESULTS OF THE KOLMOGOROV-SMIRNOV GOODNESS-OF~FIT TEST FOR NORMALITY OF

50 SEQUENCES GENERATED BY BQUATION (2.2.2)

Sequence No.

Dy = max|Fu(X) - Fo(X)[{[0.0053]0.0059|0.0039 0.0062[0.0104 {0.0092|0.0053 |0.0093 |0.0064 |[0.0098

Sequence No.

Dy = max'FN(x) - Fo(X) |0.0039{ 0.0036]0.0039] 0.0082] 0.0060}0.0067|0,0084 | 0.0052|0.0108 |0.0056

21 22 23 24 25 26 27 28 29 30

Dy = max|F(X) - Fo(X)|||0.0079] 0.0053|0.0099} 0.0066| 0.0052| 0.0065| 0.0049)|0.0066|0.0051|0.0071

Sequence No.

31 32 33 34 35 36 37 38 39 ko

|
Dy = maxIFN(X) - FO(X)i 0.0077| 0.0078|0.0072} 0.0109| 0.0068{0.0044}0.0059|0.0056]0.0067 |0.0061

Sequence No.

) Lo i3 Ly 45 ) bt 48 ho 50

Dy = max F(X) - Fo(X)] 1|0.0050{ 0.0043} 0.0081} 0.0059] 0.0079 0.0042|0.004910.009210.0088 |0.0041

The critical value of Dy for N = 10,000 and the 0.05 probability level is 0.0136.
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TABLE 5.22

RESULTS OF THE KOIMOGOROV-SMIRNOV GOODNESS~CF~FIT TEST FOR UNIFORMITY OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4)

Sequence No.

1 2 3 L 5 6 7 8 9 10
Dy = max|FPy(X) - Fo(Xi 0.0077 [0.00%40[0.0069 |0.0055 |0.0052 [0.0195* |0.0072 [0.0050 [0.0087 J0.0L2k4
Sequence To.
11 12 13 1L 15 16 17 18 19 .20
Dy = maxlFN(X) - Fo(x)l 0.0070|0.0051{0.0078 [0.0054 |0.009%4 |0.0052 {0.00TT {0.0052[0.0100 {0.0055
|
Sequence No.
21 22 23 2l 25 26 27 28 29 30
Dy = max|Fy(X) - Fo(X)| {l0.0067 |0.00T% [0.0062 [0.0095{0.0069 [0.0059 |0.0079 [0.0L04 |0.0055 [0.0059
Sequence No.
31 32 33 3k 35 36 37 38 39 ko
Dy = max|Fy(X) -~ Fo(X)| [[0.0058|0.0059 |0.0147* 10,0114 |0.0060 [0.0051 [0.00TL [0.0054 |0.0192% [0.0067
Sequence No.
41 4o 43 Ll 45 L6 47 48 Y] 50
Dy = max|Fy(X) - FO(X)i 0.0117{ 0.0108} 0.0043 [0.0046{0.0076 [0.0050 [0.0079 |0.0107 {0.0197* |0.0066

The critical value of Dy for N = 10,000 and the 0.05 probability level is 0.0136.
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TABLE 5.22

RESULTS OF THE KOIMOGOROV-SMIRNOV GOODNESS-OF~FIT TEST FOR UNIFORMITY OF 100 SEQUENCES

GENERATED BY THE UNIFORM NUMBER GENERATOR (2.1.4) - Concluded

Sequence No.

51 52 53 54 55 56 57 58 59 60
Dy = max|Fy(X) - Fp(X)}0.0042]0.0066|0.0057 [0.0060}0.0091 j0.0105 |0.0062|0.0081|0.0083 |0.0057
Sequence No,
61 62 63 6 65 66 67 68 69 T0
Dy = max|F(X) - Fu(X)|||0.0064]0.0062(0.0037 |0.0107|0.0103{0.0041 {0.0089|0.0060{0.0079 |0.0096
Sequence No.
71 T2 T3 T (7 76 71 8 79 8o
Dy = max Fy(X) - Fo(X)]|[0.0056[0.0104|0.0071 |0.0102{0.0032 0.0068 |0.0048]0.0069|0.0079 {0.0073
Sequence No.
81 82 83 8 85 86 87 88 89 90
Dy = ma.x!Fl\!(X) - FO(X)! 0.0066{0.0066}0.0068 |0.0079| 0.006k|0.0076 |0.0LC5|0.006710.0095 {0.0096
Sequence No.
91 92 93 ok 9 96 97 98 99 100
Dy = max [Fy(X) - FO(X)‘ 0.0061] 0.0114| 0.0075 [0.0069]0.00580.0105 |{0.0075]0.0086{0.0099 |0.0072

The critical wvelue of for N = 10,000 and the 0.05 probability level is 0.0136.
Dy
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TABLE 5.30

RESULTS OF A TEST ON THE MEANS OF 50 SEQUENCES GENERATED BY FQUATION (2.2.1)
Theoretical mean p = 0.00000

Scquence No.

1 2 3 i 5 6 7 8 9 10

Observed

mean ¥ 0.00596] 0.00037| ~0.00916| 0.00681|-0.00187| 0.01150| -0.00456| 0.00986| ~0.01137] ~0.00442

z=x/—‘;iﬁo.596 0.037 |-0.916 0.681 |-0.188 1.150 | -0.456 0.986 |-1.137 |-0.hk42
g,

Scquenece No.

~n “n ~z -1 e s - ~0 - A~
R i1 L) i 40 pavy L piv] i =U

Observed & 05 S e 6

mean ¥ 0.00352| 0.00565{ =0.00259} -0.00886] -0.00305 [ ~0.00126| 0.01531| 0.00130} -0.00888] -0.00623

Z = ’;/Jﬁ“ 0.351 0.565 |-0.259 [-0.886 |-0.306 {-=0.126 1.531 0.130 |-0.887 |-0.623

Sequence No.

21 22 23% 2l 25 26 27 28 29 30

Observed

mean ¥ [10-01529(-0.00095 -0.00133 0.00630| 0.00220| 0.00203} 0.00697| 0.00677| 0.00162| 0.00932

Z=3-‘7ﬁi1.528 -0.096 |-0.133 0.630 0.220 0.203 0.697 0.677 0.162 0.932
a

Sequence No.

31 32 33 34 35 36 37 38 39 Yo
g‘;:sr")_e[d 0.00791] 0.00848| ~0,00829| -0.00598] ~0.01324{=0.00177 | -0.00238| 0.00011| -0,00166] ~0.00309
z=E2>2lo.791 | 0.848 |-0.829 |-0.597 [-1.329 {-0.177 [-0.238 | 0.011 |-0.166 |-0.309

a/fN

Sequence No.

b1 42 43 bl 45 6 47 48 49 50

mean % |I0-OL063( 0.00440| -0.00137| -0.00499} -0.01428{-0.00839| 0.00849]-0.00275| ~0.00695] 0.00273

7 = 2= Blh nAx ouky 1oz lohos 1o koB Hop Ruo o.Aka dop o7s | oo RoR

= 0.127 o 0.272
o/

e critical values of 2 Tour ihe O.0) probabilily level are 21.50,

=
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[ TABLE 5.31

‘ RESULTS OF A TEST ON THE MEANS OF 50 SEQUENCES GENERATED BY FQUATION (2.2.2)

Theoretical mean p = 0.00000

1 2 3 I 5 6 7 8 9 10

Observed

mean R 0.00021{-0.00803{ 0.00009{-0.00913} 0.01333| ~0.00105|-0.00051} 0.01258] o.co0%1| 0.00719

7z = 2Ll 5,001 |-0.803 0.009 |-0.913 1.333 |[-0.105 [-0.051 1.258 0.041 0.719

oA

Sequence Wo.

[P

T 15
1 12

et
[5)Y
o
3
=
]
=
O

20

s
i
pa

Ubserved
mean x

0.00303 | =0.00354 | -0.00584 | -0.01106 |-0.01187| ~0.00859 | -0.00900 | 0.00640| 0.01646|-0.00672

Z=§—'—E 0.30% |~0.354% |-0.584 |-1.106 {-1.187 |-0.859 |-0.900 0.640 1.6k6  |-0.672

/N

Sequence No.

. 21 22 23 24 25 26 27 28 29 30

f,i‘;;g”;d 0.00623 | 0.00460]-0.01609 |-0.00597 |-0.00498| 0.00839 |-0.00532 {-0.00575 |-0.00053 | 0.00781

z - 2=l 5623 | o.460 -1.609 |-0.606 |-0.498 | 0.839 [-0.532 |-0.575 |-0.033 | 0.781

- i

Sequence No.

31 32 33 3h 35 36 37 38 39 ko

Observed

mesn X ~0.01114 [~0.01479| 0.00290| 0.00476| 0.00498|-0.00145 |-0,00851 {-0.00154 | 0.00190-0.00004

Z;E_/;;‘T#-l'llh -1.479 0.290 0.476 0.498 [(-0.145 -0.851 [-0.154 0.190 [-0.00%
g,
Sequence YNo.
41 hp 43 jn ks 46 k7 48 kg 50
=" Observed

mean ¥ || 0-0073| 0.00082|-0.01k2% | -0.00019 |-0.01523| 0.00008-0.00157 | -0.00872|-0.01255 ] -0.00kkk

. 7"—/;-1-;& 0.47% | 0.082 {-1.42k |-0.019 |-1.523 | 0.008 1-0.197 [-0.872 [-1.255 |.0.hih
[s

The eritical values of 7 for the 0.05 probability level are 1.96,
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TABLE 5.32
RESULTS OF A TEST ON THE MEANS OF 100 SPQUENCES GENERATED BY

THE UNIFORM NUMBER GENERATOR (2.1.h4)

Theoretical mean p = 0.50000

Sequence No.

1 2 3 '3 5 6 7 8 9 10
‘fj‘;:f v;d 0.49981{0.50076] 0.49780] 0.50183} 0.49904| 0.50899| 0.50346) 0.49878| 0.50226| 0.5060L
z:*/;/‘ﬁ“ 0,066 10.26% |-0.762 0.632 1~0.331 3,138% | 1.202 |-0.42k 0.782 2.100%
g,

11

n

13 1 15 16 17 18 19 20

[

Observed
mean X

0.502%810.50086| 0.50295| 0.50033] 0.50417] 0.50145( 0.49802; 0.49979( 0.49493| 0.50089

z=-x/—‘;ﬁﬂ 0.825 |0.298 1.022 0.113 1.452 0.500 {-0.683% [-0.072 [-1.756 0.307
g/

Sequence No.

21 22 23 oh 25 26 27 28 29 30

Observed |l o 5005310.50195| 0.50225 0.50523| 0.49780| 0.50084 | 0.50450| 0.4g732| 0.50182| 0.49893

mean X

Z == 0.879 10.675 0.780 1.822 1-0.766 0.293 1.569 {-0.920 0.628 1-0.368

Sequence No.

31 32 33 34 35 36 37 38 39 ko

Observed
mean X

z=§—/‘;—ﬁﬁ-o.219 0.295 2.829% | 1.453 [-0.158 |-0.649 1.086 0.575 3.034% | 0.907
[+

Sequence No.

41 Lo 43 Ll ks L6 g 48 kg 50

Observed
1 mean X

0.50567] 0.50449| 0.40068] 0.50048] 0.50281] 0.50026| 0.50296} 0.50559| 0.50908| 0.50227

7 = 2ol 1,980 1.564 {-0.111 0.168 0.976 0.092 1.025 1.952 3.17%* | 0.785

oA

Critical values of 2 for the 0.05 probability level are #1.96.
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TABLE 5.32
RESULTS OF A*TEST ON THE MEANS OF 100 SEQUENCES GENERATED BY

THE UNTFORM NUMBER GENERATOR (2.1.4) - Concluded

Theoretical mean p = 0.50000

Sequence No.

51 52 53 54 55 56 57 58 59 60
iiiirvéd 0.49879{0.50199 | 0.50167| 0.49995 | 0.49658 | 0.50550| 0.50152{ 0.49749 | 0.49600| 0.49867
7= X=Hlokg lo.680 | o578 l0.007 |73 |1.016 |o0.520 [-0.861 [-1.387 [-0.k59
oiN
Sequence No.
A1 62 63 Al [5) 66 67 68 69 70
Ooserved || o.50094 fo.50090 | 0.50030| 0.508k2 | 0.50482 | 0.50046 | 0.50483| 0.49791 ] 0.50173 | 0.50518
2= X220 0.328 [0.658 | 0.105 |1.539 |1.677 |0.59 |[1.677 [-0.725 |0.596 | 1.785
o
Sequence No.
T T2 7 I () 76 77 78 79 8o
gzzirv;d 0.4985410.50478 | 0.49836] 0.50463 | 0.49963| 0.49865 | 0.50060| 0.50280{ 0.50286] 0.50267

7 = 2= Bl.o500 {1.656 |-0.569 1.610 {-0.129 |-0.466 0.207 0.972 0.991 0.923

oA
Sequence No.
81 82 83 8k 85 86 871 88 89 90
Observed 1 0.50238(0.502k6 0.50243| 0.49836| 0.50220| ©.50517 | 0.50403| 0.502h2| 0.50381} 0.50419

7 = 2=l 0,829 0.856 0.839 [-0.56k 0.792 1.100 1.h05 0.8%0 1.319 1.453

o/ W
Sequence No.
91 92 93 9k % 96 97 98 99 100
Observed ) .
mean ¥ 0.50210{0.50576] 0.50208] 0.49696| 0.502411 0.50445] 0.50319] 0.49750( 0.49513] 0.50185

7 =

X-u 0.726 {2.003* | 0.72% |-1.056 0.838 1.541 1.107 }-0.86% {-1.691 0.640

o/V¥

Critical values of Z for the 0.05 probability level are *1.96.



RESULTS OF A TEST ON THE VARIANCES OF 50 SEQUENCES GENERATED BY EQUATION (2.2.1)

Theoretical variance o2 = 1.00000
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TABLE 5.33

Sequence No.

X5 = 10,277.48

1 2 3 b 5 6 7 8 9 10
Sﬁing g2 | 1087} 0.98uos| 1.00221 | 1.00876 | 0.99124| 1.00398 | 0.9697h | 1.02175] 0.99535| 1.00573
- 2 B
:.Lus— 10,147.68 9858.51110,021.09 | 10,086.79 991140} 10,038.79 96900.43110,216.48] 9952.50110,056.29
o2 !
Sequence No.
B 1 12 13 b 15 16 17 18 19 20
32:::::: s 1.018g4 | 1.00200{ 0.95713 | 0.98226 | 1.00070{ 1.01665 | 0.97810 | 0.98913] 0.97%95] 1.00025
- 1)s2
X = (N—aif— 10,188.38 110,019.00] 9570.34*] 9821.64 [10,006.00{10,165.48 9740.03 9890.31| 9748.53|10,001.50
24
Sequence No.
21 22 23 2k 25 26 27 28 29 30
giﬁi g2 0.96062 | 0.97339| 0.9969% | 0.99015 | 0.99662] 0.97182 | 0.98536 | 0.98801| 1.00273| 0.97883
~11s2
* = %ﬁ 9605 .24~ 9732.93| 9968.30 | 9900.51 | 9965.20f 9717.23*| 9852.61 | 9879.11}10,026.30| 9787.32
Sequence No.
31 32 33 34 35 36 37 38 39 ko
3:;?;32 .2 0.98439 0.99557{ 0.9792% | 1.00680 | 0.97745( 0.99138 | 1.01921 | 1.01680§ 1.01005) 0.99281
2 = Sl“%'el_)si oBu2.92 | 9osk.70l 9791.42 110,067.00 | 9773.52| 9912.81 |10,191.08 [10,166.98{10,099.k9] 9927.11
Segquence No.
by Lo 43 iy ks L& 4y 48 kg 50
e o2 || 0-9036 | 0.9%50| 0.98150 | 0.96468 | 0.9800| 0.99270 | 1.00361 | 1.02164| 0.99776| 1.00412
o 1)k2
@ = ‘"—02—1)-‘; 9635 4+ | 9ok 01| 9Blk.02 9645 B! 9839.027 9926.01 |10,135.09 [10,215.38] 9976.60}10,040.20

Critical values for X8 with 9999 degrees of freedom and the 0.05 probability level are: X%975 = 9723.15;
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TABLE 5.34

RESULTS OF A TEST ON THE VARTANCES OF 50 SEQUENCES GENERATED BY BQUATION (2.2.2)

Theoretical variance o2 = 1.00000

Sequence No.

1 2 3 b 5 6 7 8 9 10
32?;222 &2 0.99181] 0.99725 1.00645] 0.99772 1.00870] 0.95544 0.97748| 1.00697 0.9901810.94887
- 1)s?
$ = ﬂ?yi 9917.10] 9971.51)10,063.50] 9976.20 | 20,086.00] 9553.b0%) 9773.81]10,068.70 | 9900.81|ou87.71*
Sequence No.
11 12 13 14 15 16 17 18 19 20
?::fzfsi 2 0.99380| 0.99064| 0.97703| 1.00265 | 0.97562] 0.98843 | 0.99545| ©0.99620 | 1.01247]0.9858%
- 1)s2
X2 = -(1-02—1)—8— 9937.00] 9905.%0| 9769.31}10,025.50 9755.20] 9883.30 9953.51| 9961.90 {10,123.70}9857.41
Sequence No.
21 22 23 2k 25 26 a7 28 29 30
Sﬁg: o2 0.99048| 0.98388| 1.01708| 0.97095 | 1.02a8%| 0.97319 | 1.01920 0.98408 | 1.00199{0.99279
- 1)s2
X2 = -(N—a—z—l)s— 9903.80| 9837.80{10,169.81} 9708.50%|10,213.40{ 97%0.90 |10,191.00| 9839.80 |10,018.90|9926.90
Sequence No.
31 32 ‘33 3h 35 36 37 38 39 4o
Observed
variance 52 1.00819{ 1.00165| 1.01097| 1.02662 1.00845 1 0.99098 0.98147| 0.97163 0.973380.98282
2
@ = _(N—;e_l_)s— h0,080.90110,015.50|10,108.70(10,265.20 |10,083.51| 9908.80 | 9813.70f 9715.30%] 9732.81{9827.21
Sequence No.
41 Lo 43 i 4s 16 b7 48 Lo 50
ed
3::?3@ &2 0.97315| 1.01632| 0.99389| ©.96750 | 0.98152| 1.00766 | 0.97579 0.99098 | 1.00229}0.98571
n (N - 1}a2 P B, e PSRN - - o
X = > . Y5090 [LU,162.20] 9957T.91) 90T+.01% $0ik.2010,075.01 5750.501 5508.80 [10,001.5C19855.11
v}
Critical values for x2 with 9959 degrees of [resdom and the 0.05 probability level are 7/.2975 0723.15;

x?025 = 10,277.48.
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TABLE 5.35

RESULTS OF A TEST ON THE STANDARD DEVIATION OF 100 SEQUENCES GENERATED BY

THE UNIFORM NUMBER GENERATOR (2.1.4)

Theoretical variance o2 = 0.08333

Sequence No.

a/¥2R

1 2 3 4 5 6 7 8 2 10
3::;;::2 52|| 0.08374] 0.08504| 0.08235] 0.08336 | 0.08359 0.08201| 0.08286 | 0.08312| 0.0839%| 0.08198
_8 -0 0.350 1-0.253 [-0.839 | 0.026 |o0.221 [-1.125 }-0.ho+ [-0.180 | 0.516 [-1.150
o/ V2N
Seguence No.
11 12 13 1 15 16 17 18 19 20
Observed
varisnce s2|| 0-08308] 0.08397} 0.08338| 0.08343 | 0.08266| 0.08381| 0.08%01 | 0.08410| ©.08291| 0.08307
z=2"2 Jlo0.212 |oss2 |0.057 |0.080 j-0.572 |okoe | 0516 |o0.645 [-0.396 [-0.227 |
o/Von
o Sequence No.
21 22 23 24 25 26 27 28 29 30
Observed
- variance &2 0.08253| 0.08309{ 0.08%50| 0.08234 | 0.08235| 0.08339| 0.05243} 0.08489| 0.08379| 0.08376
z =59 Ho.685 [-0.200 |o0.140 [-0.848 1-.0.839 | 0.046 [-0.771 |[1.313 | 0.384% | 0.363
o/V2N
Sequence No.
31 32 33 34 35 36 37 38 39 ko
Observed  off 0-08463] 0.08308| 0.00184] 0.08215| 0.08405| 0.08329] 0.082881 0.08309| 0.0823%| 0.08309
=89 1.136 {-0.217 [-1.269 [-1.007 0.607 {-0.039 |-0.38% [-0.203 |-0.848 |-0.203
a/Ven
Sequence No.
- ky 4o L3 iyl 45 46 b7 48 L9 50
Ouserved — ol| 0.08213| o.08240| 0.08339| 0.08290| 0.08319| 0.08324| 0.08518| 0.08207| 0.06198| 0.08348
7z =58-20 -1.027 |-0.792 0.048 }-0.368 [-0.124 |-0.081 |-0.133 |-1.073 [-1.156 0.126

Critical values of Z for the 0.05 probability level are *1.96.
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TABLE 5.35
RESULTS OF A TEST ON THE STANDARD DEVIATION OF 100 SBQUENCES GENERATED BY

THE UNIFORM NUMBER GENERATOR (2.1.4%) - Concluded

Theoretical variance o2 = 0.08333
Sequence No.
51 52 53 Sk 55 56 57 58 59 60
Observed
variance s 0.08307] 0.08268| 0.08306( 0.08258 | 0.08492| 0.08225| 0.08261 | 0.08494 | 0.08303| 0.08388
g = 5/'2; -0.226 |-0.559 |~0.229 -0.641 |1.337 [-0.923 Gl-o.be 11,353 lo.254 0.h67
Q
Sequence No.
61 62 63 ol 65 66 67 63 69 70
Observed 08324 | 0.08 ;8 10| 0.08246 | 0.08278 | 0.08 08287 | 0.08327 | 0.08k 082
verience 2| O* 324 | 0.08309 | 0.003 0. 0.08278 1 0.053004 O. 7 | 0.08327 | 0.08437{ 0.08232
z=5/'2; -0.080 |-0.209 [-0.197 |-0.739 |-0.473 |-0.283 |-0.391 [w0.052 |0.876 |-0.864
o
Sequence No.
T T2 73 T & 76 77 78 79 80
Observed
varisnce s2|| 0-08436| 0.08334 } 0.08320 | 0.08283 | 0.08338 | 0.08366 | 0.08322 | 0.08305 | 0.08317 | 0.08335
z=s/'° 0.873 | 0.003 {~0.11% |-0.k30 [o0.0%2 |0.273 ]-0.097 {-0.237 [-0.139 | 0.010
o/ 2N
Sequence No.
81 82 83 8 85 86 87 88 89 90
325?;‘;22 2| 0.08283] 0.08233 | 0.08346| 0.08423 | 0.08384 { 006288 0.08226 | 0.08282 | 0.08317 | 0.06297
z:s/'2; -0.430 1-0.85% | o.10% | o0.760 [ o0.326 [-0.38% [-0.892 [-0.433 |-0.138 [-0.310
G,
Sequence No.
9 92 93 M b 96 97 98 9 100
Observed il 0.08358| 0.08277 | 0.0825% | 0.08500 | 0.08268 | 0.08539| 0.08285 | 0.08385 | 0.08302| 0.08317
z=s/"2; 0.207 |-0.483 |-0.673 {-0.282 [-0.558 | 0.048- |-0.b08 |o0.439 |-0.269 [-0.139
a

Critical values of % for the 0.05 probabllity level are *1,96.
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VI. OSUMMARY

This study investigated a generator producing numbers assumed to be
random and uniformly distributed on the internal (0,1), and two equations
each producing numbers assumed to be random and normally distributed with
zero mean and unit variance.

A total of 200 sequences each with 10,000 observations were

generated for this study. Of these, 100 were generated by the uniform

L+

2.1.4)

number generator { ),

N
D
o

2
D

2
]
~k
[
Q
i
—
"D
AV]
"l
e

3o

[

(7]

ot

o)

(0]

H
]
'

]

equation (2.2.2). A computer progrem was written by the author for this
purpose.

Based on the results of the various statistical tests performed on
all sequences; the following conclusions mey be drawn:

(1) It is apparent that the uniform random number generator (2.1.4)
is generating numbers that seem to be random and uniformly distributed on
the unit interval. Hence, there is an indication that this generator
should be a useful addition to the state~of-the-art.

(2) It is reasonable to believe that equation (2.2.1) generates

and unit varilance.
(3) Although equation (2.2.2) generates numbers that appear to be
normally distributed with zero mean and unit variance, the existence of

nonrandomness among the numbers it generates is apperent based on the

results of the test for zero correlation and the teast for runs shove and

below the mean of the specified distribution function. Hence, this study
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tends to conclude that equation (2.2.1) is the better normal random

number generator.



-
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